Metamath Proof Explorer


Theorem ballotth

Description: Bertrand's ballot problem : the probability that A is ahead throughout the counting. The proof formalized here is a proof "by reflection", as opposed to other known proofs "by induction" or "by permutation". This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotth PE=MNM+N

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 ssrab2 cO|i1M+N0<FciO
12 6 11 eqsstri EO
13 fzfi 1M+NFin
14 pwfi 1M+NFin𝒫1M+NFin
15 13 14 mpbi 𝒫1M+NFin
16 ssrab2 c𝒫1M+N|c=M𝒫1M+N
17 3 16 eqsstri O𝒫1M+N
18 ssfi 𝒫1M+NFinO𝒫1M+NOFin
19 15 17 18 mp2an OFin
20 ssfi OFinEOEFin
21 19 12 20 mp2an EFin
22 21 elexi EV
23 22 elpw E𝒫OEO
24 fveq2 x=Ex=E
25 24 oveq1d x=ExO=EO
26 ovex EOV
27 25 4 26 fvmpt E𝒫OPE=EO
28 23 27 sylbir EOPE=EO
29 12 28 ax-mp PE=EO
30 hashssdif OFinEOOE=OE
31 19 12 30 mp2an OE=OE
32 31 eqcomi OE=OE
33 hashcl OFinO0
34 19 33 ax-mp O0
35 34 nn0cni O
36 hashcl EFinE0
37 21 36 ax-mp E0
38 37 nn0cni E
39 difss OEO
40 ssfi OFinOEOOEFin
41 19 39 40 mp2an OEFin
42 hashcl OEFinOE0
43 41 42 ax-mp OE0
44 43 nn0cni OE
45 35 38 44 subsub23i OE=OEOOE=E
46 32 45 mpbi OOE=E
47 46 oveq1i OOEO=EO
48 29 47 eqtr4i PE=OOEO
49 1 2 3 ballotlem1 O=(M+NM)
50 1 nnnn0i M0
51 nnaddcl MNM+N
52 1 2 51 mp2an M+N
53 52 nnnn0i M+N0
54 1 nnrei M
55 2 nnnn0i N0
56 54 55 nn0addge1i MM+N
57 elfz2nn0 M0M+NM0M+N0MM+N
58 50 53 56 57 mpbir3an M0M+N
59 bccl2 M0M+N(M+NM)
60 58 59 ax-mp (M+NM)
61 60 nnne0i (M+NM)0
62 49 61 eqnetri O0
63 35 62 pm3.2i OO0
64 divsubdir OOEOO0OOEO=OOOEO
65 35 44 63 64 mp3an OOEO=OOOEO
66 35 62 dividi OO=1
67 66 oveq1i OOOEO=1OEO
68 48 65 67 3eqtri PE=1OEO
69 1 2 3 4 5 6 7 8 9 10 ballotlem8 cOE|1c=cOE|¬1c
70 69 oveq1i cOE|1c+cOE|¬1c=cOE|¬1c+cOE|¬1c
71 70 oveq1i cOE|1c+cOE|¬1cO=cOE|¬1c+cOE|¬1cO
72 rabxm OE=cOE|1ccOE|¬1c
73 72 fveq2i OE=cOE|1ccOE|¬1c
74 ssrab2 cOE|1cOE
75 74 39 sstri cOE|1cO
76 75 17 sstri cOE|1c𝒫1M+N
77 ssfi 𝒫1M+NFincOE|1c𝒫1M+NcOE|1cFin
78 15 76 77 mp2an cOE|1cFin
79 ssrab2 cOE|¬1cOE
80 79 39 sstri cOE|¬1cO
81 80 17 sstri cOE|¬1c𝒫1M+N
82 ssfi 𝒫1M+NFincOE|¬1c𝒫1M+NcOE|¬1cFin
83 15 81 82 mp2an cOE|¬1cFin
84 rabnc cOE|1ccOE|¬1c=
85 hashun cOE|1cFincOE|¬1cFincOE|1ccOE|¬1c=cOE|1ccOE|¬1c=cOE|1c+cOE|¬1c
86 78 83 84 85 mp3an cOE|1ccOE|¬1c=cOE|1c+cOE|¬1c
87 73 86 eqtri OE=cOE|1c+cOE|¬1c
88 87 oveq1i OEO=cOE|1c+cOE|¬1cO
89 ssrab2 cO|¬1cO
90 19 elexi OV
91 90 elpw2 cO|¬1c𝒫OcO|¬1cO
92 89 91 mpbir cO|¬1c𝒫O
93 fveq2 x=cO|¬1cx=cO|¬1c
94 93 oveq1d x=cO|¬1cxO=cO|¬1cO
95 ovex cO|¬1cOV
96 94 4 95 fvmpt cO|¬1c𝒫OPcO|¬1c=cO|¬1cO
97 92 96 ax-mp PcO|¬1c=cO|¬1cO
98 1 2 3 4 ballotlem2 PcO|¬1c=NM+N
99 nfrab1 _ccO|¬1c
100 nfrab1 _ccOE|¬1c
101 99 100 dfss2f cO|¬1ccOE|¬1ccccO|¬1cccOE|¬1c
102 1 2 3 4 5 6 ballotlem4 cO¬1c¬cE
103 102 imdistani cO¬1ccO¬cE
104 rabid ccO|¬1ccO¬1c
105 eldif cOEcO¬cE
106 103 104 105 3imtr4i ccO|¬1ccOE
107 104 simprbi ccO|¬1c¬1c
108 rabid ccOE|¬1ccOE¬1c
109 106 107 108 sylanbrc ccO|¬1cccOE|¬1c
110 101 109 mpgbir cO|¬1ccOE|¬1c
111 rabss2 OEOcOE|¬1ccO|¬1c
112 39 111 ax-mp cOE|¬1ccO|¬1c
113 110 112 eqssi cO|¬1c=cOE|¬1c
114 113 fveq2i cO|¬1c=cOE|¬1c
115 114 oveq1i cO|¬1cO=cOE|¬1cO
116 97 98 115 3eqtr3i NM+N=cOE|¬1cO
117 116 oveq2i 2NM+N=2cOE|¬1cO
118 2cn 2
119 hashcl cOE|¬1cFincOE|¬1c0
120 83 119 ax-mp cOE|¬1c0
121 120 nn0cni cOE|¬1c
122 118 121 35 62 divassi 2cOE|¬1cO=2cOE|¬1cO
123 121 2timesi 2cOE|¬1c=cOE|¬1c+cOE|¬1c
124 123 oveq1i 2cOE|¬1cO=cOE|¬1c+cOE|¬1cO
125 117 122 124 3eqtr2i 2NM+N=cOE|¬1c+cOE|¬1cO
126 71 88 125 3eqtr4ri 2NM+N=OEO
127 126 oveq2i 12NM+N=1OEO
128 52 nncni M+N
129 2 nncni N
130 118 129 mulcli 2 N
131 52 nnne0i M+N0
132 128 131 pm3.2i M+NM+N0
133 divsubdir M+N2 NM+NM+N0M+N-2 NM+N=M+NM+N2 NM+N
134 128 130 132 133 mp3an M+N-2 NM+N=M+NM+N2 NM+N
135 129 2timesi 2 N=N+N
136 135 oveq2i M+N-2 N=M+N-N+N
137 1 nncni M
138 137 129 129 129 addsub4i M+N-N+N=MN+N-N
139 129 subidi NN=0
140 139 oveq2i MN+N-N=M-N+0
141 137 129 subcli MN
142 141 addridi M-N+0=MN
143 138 140 142 3eqtri M+N-N+N=MN
144 136 143 eqtri M+N-2 N=MN
145 144 oveq1i M+N-2 NM+N=MNM+N
146 128 131 dividi M+NM+N=1
147 118 129 128 131 divassi 2 NM+N=2NM+N
148 146 147 oveq12i M+NM+N2 NM+N=12NM+N
149 134 145 148 3eqtr3ri 12NM+N=MNM+N
150 68 127 149 3eqtr2i PE=MNM+N