| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negdi |
|
| 2 |
1
|
3adant3 |
|
| 3 |
2
|
oveq1d |
|
| 4 |
|
negcl |
|
| 5 |
|
negcl |
|
| 6 |
|
id |
|
| 7 |
|
binomfallfac |
|
| 8 |
4 5 6 7
|
syl3an |
|
| 9 |
3 8
|
eqtrd |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
fzfid |
|
| 12 |
|
neg1cn |
|
| 13 |
|
expcl |
|
| 14 |
12 13
|
mpan |
|
| 15 |
14
|
3ad2ant3 |
|
| 16 |
|
simp3 |
|
| 17 |
|
elfzelz |
|
| 18 |
|
bccl |
|
| 19 |
16 17 18
|
syl2an |
|
| 20 |
19
|
nn0cnd |
|
| 21 |
|
simpl1 |
|
| 22 |
21
|
negcld |
|
| 23 |
16
|
nn0zd |
|
| 24 |
|
zsubcl |
|
| 25 |
23 17 24
|
syl2an |
|
| 26 |
|
elfzle2 |
|
| 27 |
26
|
adantl |
|
| 28 |
|
simpl3 |
|
| 29 |
28
|
nn0red |
|
| 30 |
|
elfznn0 |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
nn0red |
|
| 33 |
29 32
|
subge0d |
|
| 34 |
27 33
|
mpbird |
|
| 35 |
|
elnn0z |
|
| 36 |
25 34 35
|
sylanbrc |
|
| 37 |
|
fallfaccl |
|
| 38 |
22 36 37
|
syl2anc |
|
| 39 |
|
simp2 |
|
| 40 |
39
|
negcld |
|
| 41 |
|
fallfaccl |
|
| 42 |
40 30 41
|
syl2an |
|
| 43 |
38 42
|
mulcld |
|
| 44 |
20 43
|
mulcld |
|
| 45 |
11 15 44
|
fsummulc2 |
|
| 46 |
10 45
|
eqtrd |
|
| 47 |
|
addcl |
|
| 48 |
|
risefallfac |
|
| 49 |
47 48
|
stoic3 |
|
| 50 |
|
risefallfac |
|
| 51 |
21 36 50
|
syl2anc |
|
| 52 |
|
simpl2 |
|
| 53 |
|
risefallfac |
|
| 54 |
52 31 53
|
syl2anc |
|
| 55 |
51 54
|
oveq12d |
|
| 56 |
|
expcl |
|
| 57 |
12 36 56
|
sylancr |
|
| 58 |
|
expcl |
|
| 59 |
12 30 58
|
sylancr |
|
| 60 |
59
|
adantl |
|
| 61 |
57 38 60 42
|
mul4d |
|
| 62 |
12
|
a1i |
|
| 63 |
62 31 36
|
expaddd |
|
| 64 |
16
|
nn0cnd |
|
| 65 |
30
|
nn0cnd |
|
| 66 |
|
npcan |
|
| 67 |
64 65 66
|
syl2an |
|
| 68 |
67
|
oveq2d |
|
| 69 |
63 68
|
eqtr3d |
|
| 70 |
69
|
oveq1d |
|
| 71 |
55 61 70
|
3eqtrd |
|
| 72 |
71
|
oveq2d |
|
| 73 |
15
|
adantr |
|
| 74 |
20 73 43
|
mul12d |
|
| 75 |
72 74
|
eqtrd |
|
| 76 |
75
|
sumeq2dv |
|
| 77 |
46 49 76
|
3eqtr4d |
|