Description: The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn . (Contributed by Mario Carneiro, 8-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | bitsf1ocnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | bitsss | |
|
3 | 2 | a1i | |
4 | bitsfi | |
|
5 | elfpw | |
|
6 | 3 4 5 | sylanbrc | |
7 | 6 | adantl | |
8 | elinel2 | |
|
9 | 2nn0 | |
|
10 | 9 | a1i | |
11 | elfpw | |
|
12 | 11 | simplbi | |
13 | 12 | sselda | |
14 | 10 13 | nn0expcld | |
15 | 8 14 | fsumnn0cl | |
16 | 15 | adantl | |
17 | bitsinv2 | |
|
18 | 17 | eqcomd | |
19 | 18 | ad2antll | |
20 | fveq2 | |
|
21 | 20 | eqeq2d | |
22 | 19 21 | syl5ibrcom | |
23 | bitsinv1 | |
|
24 | 23 | eqcomd | |
25 | 24 | ad2antrl | |
26 | sumeq1 | |
|
27 | 26 | eqeq2d | |
28 | 25 27 | syl5ibrcom | |
29 | 22 28 | impbid | |
30 | 1 7 16 29 | f1ocnv2d | |
31 | 30 | simpld | |
32 | bitsf | |
|
33 | 32 | a1i | |
34 | 33 | feqmptd | |
35 | 34 | reseq1d | |
36 | nn0ssz | |
|
37 | resmpt | |
|
38 | 36 37 | ax-mp | |
39 | 35 38 | eqtrdi | |
40 | 39 | f1oeq1d | |
41 | 31 40 | mpbird | |
42 | 39 | cnveqd | |
43 | 30 | simprd | |
44 | 42 43 | eqtrd | |
45 | 41 44 | jca | |
46 | 45 | mptru | |