Metamath Proof Explorer


Theorem brcolinear2

Description: Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion brcolinear2 Q V R W P Colinear Q R n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q

Proof

Step Hyp Ref Expression
1 colinrel Rel Colinear
2 1 brrelex1i P Colinear Q R P V
3 2 a1i Q V R W P Colinear Q R P V
4 elex P 𝔼 n P V
5 4 3ad2ant1 P 𝔼 n Q 𝔼 n R 𝔼 n P V
6 5 adantr P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q P V
7 6 rexlimivw n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q P V
8 7 a1i Q V R W n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q P V
9 df-br P Colinear Q R P Q R Colinear
10 df-colinear Colinear = q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
11 10 eleq2i P Q R Colinear P Q R q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
12 9 11 bitri P Colinear Q R P Q R q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1
13 opex Q R V
14 opelcnvg P V Q R V P Q R q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1 Q R P q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q
15 13 14 mpan2 P V P Q R q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1 Q R P q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q
16 15 3ad2ant3 Q V R W P V P Q R q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q -1 Q R P q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q
17 12 16 syl5bb Q V R W P V P Colinear Q R Q R P q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q
18 eleq1 q = Q q 𝔼 n Q 𝔼 n
19 18 3anbi2d q = Q p 𝔼 n q 𝔼 n r 𝔼 n p 𝔼 n Q 𝔼 n r 𝔼 n
20 opeq1 q = Q q r = Q r
21 20 breq2d q = Q p Btwn q r p Btwn Q r
22 breq1 q = Q q Btwn r p Q Btwn r p
23 opeq2 q = Q p q = p Q
24 23 breq2d q = Q r Btwn p q r Btwn p Q
25 21 22 24 3orbi123d q = Q p Btwn q r q Btwn r p r Btwn p q p Btwn Q r Q Btwn r p r Btwn p Q
26 19 25 anbi12d q = Q p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q p 𝔼 n Q 𝔼 n r 𝔼 n p Btwn Q r Q Btwn r p r Btwn p Q
27 26 rexbidv q = Q n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q n p 𝔼 n Q 𝔼 n r 𝔼 n p Btwn Q r Q Btwn r p r Btwn p Q
28 eleq1 r = R r 𝔼 n R 𝔼 n
29 28 3anbi3d r = R p 𝔼 n Q 𝔼 n r 𝔼 n p 𝔼 n Q 𝔼 n R 𝔼 n
30 opeq2 r = R Q r = Q R
31 30 breq2d r = R p Btwn Q r p Btwn Q R
32 opeq1 r = R r p = R p
33 32 breq2d r = R Q Btwn r p Q Btwn R p
34 breq1 r = R r Btwn p Q R Btwn p Q
35 31 33 34 3orbi123d r = R p Btwn Q r Q Btwn r p r Btwn p Q p Btwn Q R Q Btwn R p R Btwn p Q
36 29 35 anbi12d r = R p 𝔼 n Q 𝔼 n r 𝔼 n p Btwn Q r Q Btwn r p r Btwn p Q p 𝔼 n Q 𝔼 n R 𝔼 n p Btwn Q R Q Btwn R p R Btwn p Q
37 36 rexbidv r = R n p 𝔼 n Q 𝔼 n r 𝔼 n p Btwn Q r Q Btwn r p r Btwn p Q n p 𝔼 n Q 𝔼 n R 𝔼 n p Btwn Q R Q Btwn R p R Btwn p Q
38 eleq1 p = P p 𝔼 n P 𝔼 n
39 38 3anbi1d p = P p 𝔼 n Q 𝔼 n R 𝔼 n P 𝔼 n Q 𝔼 n R 𝔼 n
40 breq1 p = P p Btwn Q R P Btwn Q R
41 opeq2 p = P R p = R P
42 41 breq2d p = P Q Btwn R p Q Btwn R P
43 opeq1 p = P p Q = P Q
44 43 breq2d p = P R Btwn p Q R Btwn P Q
45 40 42 44 3orbi123d p = P p Btwn Q R Q Btwn R p R Btwn p Q P Btwn Q R Q Btwn R P R Btwn P Q
46 39 45 anbi12d p = P p 𝔼 n Q 𝔼 n R 𝔼 n p Btwn Q R Q Btwn R p R Btwn p Q P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q
47 46 rexbidv p = P n p 𝔼 n Q 𝔼 n R 𝔼 n p Btwn Q R Q Btwn R p R Btwn p Q n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q
48 27 37 47 eloprabg Q V R W P V Q R P q r p | n p 𝔼 n q 𝔼 n r 𝔼 n p Btwn q r q Btwn r p r Btwn p q n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q
49 17 48 bitrd Q V R W P V P Colinear Q R n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q
50 49 3expia Q V R W P V P Colinear Q R n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q
51 3 8 50 pm5.21ndd Q V R W P Colinear Q R n P 𝔼 n Q 𝔼 n R 𝔼 n P Btwn Q R Q Btwn R P R Btwn P Q