| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
simp2l |
|
| 3 |
|
simp3r |
|
| 4 |
|
simp3 |
|
| 5 |
|
axsegcon |
|
| 6 |
1 2 3 4 5
|
syl121anc |
|
| 7 |
|
simp3l |
|
| 8 |
|
axsegcon |
|
| 9 |
1 2 7 4 8
|
syl121anc |
|
| 10 |
|
reeanv |
|
| 11 |
6 9 10
|
sylanbrc |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpl1 |
|
| 14 |
|
simpl2l |
|
| 15 |
|
simprl |
|
| 16 |
|
simpl3l |
|
| 17 |
|
simpl2r |
|
| 18 |
|
axsegcon |
|
| 19 |
13 14 15 16 17 18
|
syl122anc |
|
| 20 |
|
simprr |
|
| 21 |
|
simpl3r |
|
| 22 |
|
axsegcon |
|
| 23 |
13 14 20 21 17 22
|
syl122anc |
|
| 24 |
19 23
|
jca |
|
| 25 |
24
|
adantr |
|
| 26 |
|
reeanv |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
13 14 17
|
3jca |
|
| 29 |
28
|
adantr |
|
| 30 |
16 21 15
|
3jca |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simplrr |
|
| 33 |
|
simprl |
|
| 34 |
|
simprr |
|
| 35 |
32 33 34
|
3jca |
|
| 36 |
29 31 35
|
3jca |
|
| 37 |
|
simpll |
|
| 38 |
|
simplr |
|
| 39 |
|
simpr |
|
| 40 |
37 38 39
|
3jca |
|
| 41 |
|
btwnconn1lem2 |
|
| 42 |
36 40 41
|
syl2an |
|
| 43 |
|
opeq2 |
|
| 44 |
43
|
breq2d |
|
| 45 |
|
opeq2 |
|
| 46 |
45
|
breq1d |
|
| 47 |
44 46
|
anbi12d |
|
| 48 |
47
|
anbi2d |
|
| 49 |
48
|
anbi2d |
|
| 50 |
49
|
biimpac |
|
| 51 |
32 33
|
jca |
|
| 52 |
29 31 51
|
jca32 |
|
| 53 |
|
simpll |
|
| 54 |
|
simplr |
|
| 55 |
|
simpr |
|
| 56 |
53 54 55
|
3jca |
|
| 57 |
|
btwnconn1lem13 |
|
| 58 |
52 56 57
|
syl2an |
|
| 59 |
58
|
ex |
|
| 60 |
50 59
|
syl5 |
|
| 61 |
60
|
expdimp |
|
| 62 |
42 61
|
mpd |
|
| 63 |
62
|
an4s |
|
| 64 |
63
|
exp32 |
|
| 65 |
64
|
rexlimdvv |
|
| 66 |
27 65
|
mpd |
|
| 67 |
|
orcom |
|
| 68 |
|
simprrl |
|
| 69 |
68
|
adantl |
|
| 70 |
|
opeq2 |
|
| 71 |
70
|
breq2d |
|
| 72 |
69 71
|
syl5ibrcom |
|
| 73 |
|
simprll |
|
| 74 |
73
|
adantl |
|
| 75 |
|
opeq2 |
|
| 76 |
75
|
breq2d |
|
| 77 |
74 76
|
syl5ibrcom |
|
| 78 |
72 77
|
orim12d |
|
| 79 |
67 78
|
biimtrid |
|
| 80 |
66 79
|
mpd |
|
| 81 |
80
|
an4s |
|
| 82 |
81
|
exp32 |
|
| 83 |
82
|
rexlimdvv |
|
| 84 |
12 83
|
mpd |
|