Metamath Proof Explorer


Theorem cantnfp1lem2

Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 30-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfp1.g φGS
cantnfp1.x φXB
cantnfp1.y φYA
cantnfp1.s φGsuppX
cantnfp1.f F=tBift=XYGt
cantnfp1.e φY
cantnfp1.o O=OrdIsoEFsupp
Assertion cantnfp1lem2 φdomO=sucdomO

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfp1.g φGS
5 cantnfp1.x φXB
6 cantnfp1.y φYA
7 cantnfp1.s φGsuppX
8 cantnfp1.f F=tBift=XYGt
9 cantnfp1.e φY
10 cantnfp1.o O=OrdIsoEFsupp
11 iftrue t=Xift=XYGt=Y
12 8 11 5 6 fvmptd3 φFX=Y
13 9 ne0d φY
14 12 13 eqnetrd φFX
15 6 adantr φtBYA
16 1 2 3 cantnfs φGSG:BAfinSuppG
17 4 16 mpbid φG:BAfinSuppG
18 17 simpld φG:BA
19 18 ffvelcdmda φtBGtA
20 15 19 ifcld φtBift=XYGtA
21 20 8 fmptd φF:BA
22 21 ffnd φFFnB
23 9 elexd φV
24 elsuppfn FFnBBOnVXsuppFXBFX
25 22 3 23 24 syl3anc φXsuppFXBFX
26 5 14 25 mpbir2and φXsuppF
27 n0i XsuppF¬Fsupp=
28 26 27 syl φ¬Fsupp=
29 ovexd φFsuppV
30 1 2 3 4 5 6 7 8 cantnfp1lem1 φFS
31 1 2 3 10 30 cantnfcl φEWesuppFdomOω
32 31 simpld φEWesuppF
33 10 oien FsuppVEWesuppFdomOsuppF
34 29 32 33 syl2anc φdomOsuppF
35 breq1 domO=domOsuppFsuppF
36 ensymb suppFsuppF
37 en0 suppFFsupp=
38 36 37 bitri suppFFsupp=
39 35 38 bitrdi domO=domOsuppFFsupp=
40 34 39 syl5ibcom φdomO=Fsupp=
41 28 40 mtod φ¬domO=
42 31 simprd φdomOω
43 nnlim domOω¬LimdomO
44 42 43 syl φ¬LimdomO
45 ioran ¬domO=LimdomO¬domO=¬LimdomO
46 41 44 45 sylanbrc φ¬domO=LimdomO
47 nnord domOωOrddomO
48 unizlim OrddomOdomO=domOdomO=LimdomO
49 42 47 48 3syl φdomO=domOdomO=LimdomO
50 46 49 mtbird φ¬domO=domO
51 orduniorsuc OrddomOdomO=domOdomO=sucdomO
52 42 47 51 3syl φdomO=domOdomO=sucdomO
53 52 ord φ¬domO=domOdomO=sucdomO
54 50 53 mpd φdomO=sucdomO