| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
cantnfp1.g |
|
| 5 |
|
cantnfp1.x |
|
| 6 |
|
cantnfp1.y |
|
| 7 |
|
cantnfp1.s |
|
| 8 |
|
cantnfp1.f |
|
| 9 |
|
cantnfp1.e |
|
| 10 |
|
cantnfp1.o |
|
| 11 |
|
iftrue |
|
| 12 |
8 11 5 6
|
fvmptd3 |
|
| 13 |
9
|
ne0d |
|
| 14 |
12 13
|
eqnetrd |
|
| 15 |
6
|
adantr |
|
| 16 |
1 2 3
|
cantnfs |
|
| 17 |
4 16
|
mpbid |
|
| 18 |
17
|
simpld |
|
| 19 |
18
|
ffvelcdmda |
|
| 20 |
15 19
|
ifcld |
|
| 21 |
20 8
|
fmptd |
|
| 22 |
21
|
ffnd |
|
| 23 |
9
|
elexd |
|
| 24 |
|
elsuppfn |
|
| 25 |
22 3 23 24
|
syl3anc |
|
| 26 |
5 14 25
|
mpbir2and |
|
| 27 |
|
n0i |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
ovexd |
|
| 30 |
1 2 3 4 5 6 7 8
|
cantnfp1lem1 |
|
| 31 |
1 2 3 10 30
|
cantnfcl |
|
| 32 |
31
|
simpld |
|
| 33 |
10
|
oien |
|
| 34 |
29 32 33
|
syl2anc |
|
| 35 |
|
breq1 |
|
| 36 |
|
ensymb |
|
| 37 |
|
en0 |
|
| 38 |
36 37
|
bitri |
|
| 39 |
35 38
|
bitrdi |
|
| 40 |
34 39
|
syl5ibcom |
|
| 41 |
28 40
|
mtod |
|
| 42 |
31
|
simprd |
|
| 43 |
|
nnlim |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
ioran |
|
| 46 |
41 44 45
|
sylanbrc |
|
| 47 |
|
nnord |
|
| 48 |
|
unizlim |
|
| 49 |
42 47 48
|
3syl |
|
| 50 |
46 49
|
mtbird |
|
| 51 |
|
orduniorsuc |
|
| 52 |
42 47 51
|
3syl |
|
| 53 |
52
|
ord |
|
| 54 |
50 53
|
mpd |
|