Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
cantnfp1.g | |
||
cantnfp1.x | |
||
cantnfp1.y | |
||
cantnfp1.s | |
||
cantnfp1.f | |
||
cantnfp1.e | |
||
cantnfp1.o | |
||
Assertion | cantnfp1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | cantnfp1.g | |
|
5 | cantnfp1.x | |
|
6 | cantnfp1.y | |
|
7 | cantnfp1.s | |
|
8 | cantnfp1.f | |
|
9 | cantnfp1.e | |
|
10 | cantnfp1.o | |
|
11 | iftrue | |
|
12 | 8 11 5 6 | fvmptd3 | |
13 | 9 | ne0d | |
14 | 12 13 | eqnetrd | |
15 | 6 | adantr | |
16 | 1 2 3 | cantnfs | |
17 | 4 16 | mpbid | |
18 | 17 | simpld | |
19 | 18 | ffvelcdmda | |
20 | 15 19 | ifcld | |
21 | 20 8 | fmptd | |
22 | 21 | ffnd | |
23 | 9 | elexd | |
24 | elsuppfn | |
|
25 | 22 3 23 24 | syl3anc | |
26 | 5 14 25 | mpbir2and | |
27 | n0i | |
|
28 | 26 27 | syl | |
29 | ovexd | |
|
30 | 1 2 3 4 5 6 7 8 | cantnfp1lem1 | |
31 | 1 2 3 10 30 | cantnfcl | |
32 | 31 | simpld | |
33 | 10 | oien | |
34 | 29 32 33 | syl2anc | |
35 | breq1 | |
|
36 | ensymb | |
|
37 | en0 | |
|
38 | 36 37 | bitri | |
39 | 35 38 | bitrdi | |
40 | 34 39 | syl5ibcom | |
41 | 28 40 | mtod | |
42 | 31 | simprd | |
43 | nnlim | |
|
44 | 42 43 | syl | |
45 | ioran | |
|
46 | 41 44 45 | sylanbrc | |
47 | nnord | |
|
48 | unizlim | |
|
49 | 42 47 48 | 3syl | |
50 | 46 49 | mtbird | |
51 | orduniorsuc | |
|
52 | 42 47 51 | 3syl | |
53 | 52 | ord | |
54 | 50 53 | mpd | |