| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caures.1 |
|
| 2 |
|
caures.3 |
|
| 3 |
|
caures.4 |
|
| 4 |
|
caushft.4 |
|
| 5 |
|
caushft.5 |
|
| 6 |
|
caushft.7 |
|
| 7 |
|
caushft.8 |
|
| 8 |
|
caushft.9 |
|
| 9 |
|
metxmet |
|
| 10 |
3 9
|
syl |
|
| 11 |
6
|
ralrimiva |
|
| 12 |
|
fveq2 |
|
| 13 |
|
fvoveq1 |
|
| 14 |
12 13
|
eqeq12d |
|
| 15 |
14
|
rspccva |
|
| 16 |
11 15
|
sylan |
|
| 17 |
1 10 2 6 16
|
iscau4 |
|
| 18 |
7 17
|
mpbid |
|
| 19 |
18
|
simprd |
|
| 20 |
1
|
eleq2i |
|
| 21 |
20
|
biimpi |
|
| 22 |
|
eluzadd |
|
| 23 |
21 5 22
|
syl2anr |
|
| 24 |
23 4
|
eleqtrrdi |
|
| 25 |
|
simplr |
|
| 26 |
25 1
|
eleqtrdi |
|
| 27 |
|
eluzelz |
|
| 28 |
26 27
|
syl |
|
| 29 |
5
|
ad2antrr |
|
| 30 |
|
simpr |
|
| 31 |
|
eluzsub |
|
| 32 |
28 29 30 31
|
syl3anc |
|
| 33 |
|
simp3 |
|
| 34 |
33
|
ralimi |
|
| 35 |
|
fvoveq1 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
breq1d |
|
| 38 |
37
|
rspcv |
|
| 39 |
32 34 38
|
syl2im |
|
| 40 |
|
eluzelz |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
zcnd |
|
| 43 |
5
|
zcnd |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
42 44
|
npcand |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
oveq1d |
|
| 48 |
3
|
ad2antrr |
|
| 49 |
8
|
ad2antrr |
|
| 50 |
4
|
uztrn2 |
|
| 51 |
24 50
|
sylan |
|
| 52 |
49 51
|
ffvelcdmd |
|
| 53 |
8
|
adantr |
|
| 54 |
53 24
|
ffvelcdmd |
|
| 55 |
54
|
adantr |
|
| 56 |
|
metsym |
|
| 57 |
48 52 55 56
|
syl3anc |
|
| 58 |
47 57
|
eqtrd |
|
| 59 |
58
|
breq1d |
|
| 60 |
39 59
|
sylibd |
|
| 61 |
60
|
ralrimdva |
|
| 62 |
|
fveq2 |
|
| 63 |
|
fveq2 |
|
| 64 |
63
|
oveq1d |
|
| 65 |
64
|
breq1d |
|
| 66 |
62 65
|
raleqbidv |
|
| 67 |
66
|
rspcev |
|
| 68 |
24 61 67
|
syl6an |
|
| 69 |
68
|
rexlimdva |
|
| 70 |
69
|
ralimdv |
|
| 71 |
19 70
|
mpd |
|
| 72 |
2 5
|
zaddcld |
|
| 73 |
|
eqidd |
|
| 74 |
|
eqidd |
|
| 75 |
4 10 72 73 74 8
|
iscauf |
|
| 76 |
71 75
|
mpbird |
|