Metamath Proof Explorer


Theorem cdleme22b

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 5th line on p. 115. Show that t \/ v =/= p \/ q and s <_ p \/ q implies -. t <_ p \/ q. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
Assertion cdleme22b KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬T˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 simp1l KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QKHL
7 simp1r1 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QSA
8 simp1r2 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QTA
9 simp1r3 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QST
10 eqid LLinesK=LLinesK
11 2 4 10 llni2 KHLSATASTS˙TLLinesK
12 6 7 8 9 11 syl31anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙TLLinesK
13 4 10 llnneat KHLS˙TLLinesK¬S˙TA
14 6 12 13 syl2anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬S˙TA
15 eqid 0.K=0.K
16 15 10 llnn0 KHLS˙TLLinesKS˙T0.K
17 6 12 16 syl2anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T0.K
18 14 17 jca KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬S˙TAS˙T0.K
19 df-ne S˙T0.K¬S˙T=0.K
20 19 anbi2i ¬S˙TAS˙T0.K¬S˙TA¬S˙T=0.K
21 pm4.56 ¬S˙TA¬S˙T=0.K¬S˙TAS˙T=0.K
22 20 21 bitri ¬S˙TAS˙T0.K¬S˙TAS˙T=0.K
23 18 22 sylib KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬S˙TAS˙T=0.K
24 simp3r2 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙V
25 simp3l KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QVA
26 1 2 4 hlatlej1 KHLTAVAT˙T˙V
27 6 8 25 26 syl3anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙T˙V
28 6 hllatd KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QKLat
29 eqid BaseK=BaseK
30 29 4 atbase SASBaseK
31 7 30 syl KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QSBaseK
32 29 4 atbase TATBaseK
33 8 32 syl KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QTBaseK
34 29 2 4 hlatjcl KHLTAVAT˙VBaseK
35 6 8 25 34 syl3anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙VBaseK
36 29 1 2 latjle12 KLatSBaseKTBaseKT˙VBaseKS˙T˙VT˙T˙VS˙T˙T˙V
37 28 31 33 35 36 syl13anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙VT˙T˙VS˙T˙T˙V
38 24 27 37 mpbi2and KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙T˙V
39 38 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙T˙T˙V
40 simp3r3 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙P˙Q
41 40 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙P˙Q
42 simpr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QT˙P˙Q
43 simp21 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QPA
44 simp22 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QQA
45 29 2 4 hlatjcl KHLPAQAP˙QBaseK
46 6 43 44 45 syl3anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QP˙QBaseK
47 29 1 2 latjle12 KLatSBaseKTBaseKP˙QBaseKS˙P˙QT˙P˙QS˙T˙P˙Q
48 28 31 33 46 47 syl13anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙P˙QT˙P˙QS˙T˙P˙Q
49 48 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙P˙QT˙P˙QS˙T˙P˙Q
50 41 42 49 mpbi2and KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙T˙P˙Q
51 29 2 4 hlatjcl KHLSATAS˙TBaseK
52 6 7 8 51 syl3anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙TBaseK
53 29 1 3 latlem12 KLatS˙TBaseKT˙VBaseKP˙QBaseKS˙T˙T˙VS˙T˙P˙QS˙T˙T˙V˙P˙Q
54 28 52 35 46 53 syl13anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙T˙VS˙T˙P˙QS˙T˙T˙V˙P˙Q
55 54 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙T˙T˙VS˙T˙P˙QS˙T˙T˙V˙P˙Q
56 39 50 55 mpbi2and KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙T˙T˙V˙P˙Q
57 56 ex KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙T˙T˙V˙P˙Q
58 hlop KHLKOP
59 6 58 syl KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QKOP
60 59 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QKOP
61 52 adantr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QS˙TBaseK
62 simprl KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QT˙V˙P˙QA
63 simprr KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QS˙T˙T˙V˙P˙Q
64 29 1 15 4 leat3 KOPS˙TBaseKT˙V˙P˙QAS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
65 60 61 62 63 64 syl31anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
66 65 exp32 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
67 breq2 T˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙T˙0.K
68 67 biimpa T˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙T˙0.K
69 29 1 15 ople0 KOPS˙TBaseKS˙T˙0.KS˙T=0.K
70 59 52 69 syl2anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙0.KS˙T=0.K
71 68 70 imbitrid KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙T=0.K
72 71 imp KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙T=0.K
73 72 olcd KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
74 73 exp32 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙Q=0.KS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
75 simp3r1 KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙VP˙Q
76 2 3 15 4 2atmat0 KHLTAVAPAQAT˙VP˙QT˙V˙P˙QAT˙V˙P˙Q=0.K
77 6 8 25 43 44 75 76 syl33anc KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙V˙P˙QAT˙V˙P˙Q=0.K
78 66 74 77 mpjaod KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QS˙T˙T˙V˙P˙QS˙TAS˙T=0.K
79 57 78 syld KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙QT˙P˙QS˙TAS˙T=0.K
80 23 79 mtod KHLSATASTPAQAPQVAT˙VP˙QS˙T˙VS˙P˙Q¬T˙P˙Q