| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme22.l |
|
| 2 |
|
cdleme22.j |
|
| 3 |
|
cdleme22.m |
|
| 4 |
|
cdleme22.a |
|
| 5 |
|
cdleme22.h |
|
| 6 |
|
simp1l |
|
| 7 |
|
simp1r1 |
|
| 8 |
|
simp1r2 |
|
| 9 |
|
simp1r3 |
|
| 10 |
|
eqid |
|
| 11 |
2 4 10
|
llni2 |
|
| 12 |
6 7 8 9 11
|
syl31anc |
|
| 13 |
4 10
|
llnneat |
|
| 14 |
6 12 13
|
syl2anc |
|
| 15 |
|
eqid |
|
| 16 |
15 10
|
llnn0 |
|
| 17 |
6 12 16
|
syl2anc |
|
| 18 |
14 17
|
jca |
|
| 19 |
|
df-ne |
|
| 20 |
19
|
anbi2i |
|
| 21 |
|
pm4.56 |
|
| 22 |
20 21
|
bitri |
|
| 23 |
18 22
|
sylib |
|
| 24 |
|
simp3r2 |
|
| 25 |
|
simp3l |
|
| 26 |
1 2 4
|
hlatlej1 |
|
| 27 |
6 8 25 26
|
syl3anc |
|
| 28 |
6
|
hllatd |
|
| 29 |
|
eqid |
|
| 30 |
29 4
|
atbase |
|
| 31 |
7 30
|
syl |
|
| 32 |
29 4
|
atbase |
|
| 33 |
8 32
|
syl |
|
| 34 |
29 2 4
|
hlatjcl |
|
| 35 |
6 8 25 34
|
syl3anc |
|
| 36 |
29 1 2
|
latjle12 |
|
| 37 |
28 31 33 35 36
|
syl13anc |
|
| 38 |
24 27 37
|
mpbi2and |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simp3r3 |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
|
simp21 |
|
| 44 |
|
simp22 |
|
| 45 |
29 2 4
|
hlatjcl |
|
| 46 |
6 43 44 45
|
syl3anc |
|
| 47 |
29 1 2
|
latjle12 |
|
| 48 |
28 31 33 46 47
|
syl13anc |
|
| 49 |
48
|
adantr |
|
| 50 |
41 42 49
|
mpbi2and |
|
| 51 |
29 2 4
|
hlatjcl |
|
| 52 |
6 7 8 51
|
syl3anc |
|
| 53 |
29 1 3
|
latlem12 |
|
| 54 |
28 52 35 46 53
|
syl13anc |
|
| 55 |
54
|
adantr |
|
| 56 |
39 50 55
|
mpbi2and |
|
| 57 |
56
|
ex |
|
| 58 |
|
hlop |
|
| 59 |
6 58
|
syl |
|
| 60 |
59
|
adantr |
|
| 61 |
52
|
adantr |
|
| 62 |
|
simprl |
|
| 63 |
|
simprr |
|
| 64 |
29 1 15 4
|
leat3 |
|
| 65 |
60 61 62 63 64
|
syl31anc |
|
| 66 |
65
|
exp32 |
|
| 67 |
|
breq2 |
|
| 68 |
67
|
biimpa |
|
| 69 |
29 1 15
|
ople0 |
|
| 70 |
59 52 69
|
syl2anc |
|
| 71 |
68 70
|
imbitrid |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
olcd |
|
| 74 |
73
|
exp32 |
|
| 75 |
|
simp3r1 |
|
| 76 |
2 3 15 4
|
2atmat0 |
|
| 77 |
6 8 25 43 44 75 76
|
syl33anc |
|
| 78 |
66 74 77
|
mpjaod |
|
| 79 |
57 78
|
syld |
|
| 80 |
23 79
|
mtod |
|