Metamath Proof Explorer


Theorem cdleme35b

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme35b KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙R˙W˙Q˙R˙U

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKLat
10 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA
11 eqid BaseK=BaseK
12 11 4 atbase QAQBaseK
13 10 12 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQBaseK
14 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
15 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHLWH
16 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA¬P˙W
17 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPQ
18 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
19 15 16 10 17 18 syl112anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QUA
20 11 2 4 hlatjcl KHLRAUAR˙UBaseK
21 8 14 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙UBaseK
22 11 1 2 latlej1 KLatQBaseKR˙UBaseKQ˙Q˙R˙U
23 9 13 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙Q˙R˙U
24 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA
25 11 4 atbase PAPBaseK
26 24 25 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPBaseK
27 11 4 atbase RARBaseK
28 14 27 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRBaseK
29 11 2 latjcl KLatPBaseKRBaseKP˙RBaseK
30 9 26 28 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙RBaseK
31 simp11r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWH
32 11 5 lhpbase WHWBaseK
33 31 32 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWBaseK
34 11 3 latmcl KLatP˙RBaseKWBaseKP˙R˙WBaseK
35 9 30 33 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙WBaseK
36 11 2 latjcl KLatP˙RBaseKQBaseKP˙R˙QBaseK
37 9 30 13 36 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙QBaseK
38 11 1 3 latmle1 KLatP˙RBaseKWBaseKP˙R˙W˙P˙R
39 9 30 33 38 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙W˙P˙R
40 11 1 2 latlej1 KLatP˙RBaseKQBaseKP˙R˙P˙R˙Q
41 9 30 13 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙P˙R˙Q
42 11 1 9 35 30 37 39 41 lattrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙W˙P˙R˙Q
43 6 oveq2i Q˙U=Q˙P˙Q˙W
44 11 2 4 hlatjcl KHLPAQAP˙QBaseK
45 8 24 10 44 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙QBaseK
46 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
47 8 24 10 46 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙Q
48 11 1 2 3 4 atmod3i1 KHLQAP˙QBaseKWBaseKQ˙P˙QQ˙P˙Q˙W=P˙Q˙Q˙W
49 8 10 45 33 47 48 syl131anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙Q˙W=P˙Q˙Q˙W
50 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA¬Q˙W
51 eqid 1.K=1.K
52 1 2 51 4 5 lhpjat2 KHLWHQA¬Q˙WQ˙W=1.K
53 15 50 52 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙W=1.K
54 53 oveq2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙Q˙Q˙W=P˙Q˙1.K
55 hlol KHLKOL
56 8 55 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKOL
57 11 3 51 olm11 KOLP˙QBaseKP˙Q˙1.K=P˙Q
58 56 45 57 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙Q˙1.K=P˙Q
59 49 54 58 3eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙Q˙W=P˙Q
60 43 59 eqtrid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙U=P˙Q
61 60 oveq2d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙Q˙U=R˙P˙Q
62 2 4 hlatj12 KHLQARAUAQ˙R˙U=R˙Q˙U
63 8 10 14 19 62 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙U=R˙Q˙U
64 2 4 hlatjcom KHLPARAP˙R=R˙P
65 8 24 14 64 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R=R˙P
66 65 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙Q=R˙P˙Q
67 2 4 hlatjass KHLRAPAQAR˙P˙Q=R˙P˙Q
68 8 14 24 10 67 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙P˙Q=R˙P˙Q
69 66 68 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙Q=R˙P˙Q
70 61 63 69 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙Q=Q˙R˙U
71 42 70 breqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙W˙Q˙R˙U
72 11 2 latjcl KLatQBaseKR˙UBaseKQ˙R˙UBaseK
73 9 13 21 72 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙UBaseK
74 11 1 2 latjle12 KLatQBaseKP˙R˙WBaseKQ˙R˙UBaseKQ˙Q˙R˙UP˙R˙W˙Q˙R˙UQ˙P˙R˙W˙Q˙R˙U
75 9 13 35 73 74 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙Q˙R˙UP˙R˙W˙Q˙R˙UQ˙P˙R˙W˙Q˙R˙U
76 23 71 75 mpbi2and KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙R˙W˙Q˙R˙U