Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11l |
|
9 |
|
simp12l |
|
10 |
|
simp11 |
|
11 |
|
simp2r |
|
12 |
1 4 5 6
|
ltrnat |
|
13 |
10 11 9 12
|
syl3anc |
|
14 |
1 2 4
|
hlatlej1 |
|
15 |
8 9 13 14
|
syl3anc |
|
16 |
|
simp32 |
|
17 |
|
simp2l |
|
18 |
|
simp12 |
|
19 |
1 4 5 6
|
ltrnel |
|
20 |
10 11 18 19
|
syl3anc |
|
21 |
1 2 3 4 5 6 7
|
trlval2 |
|
22 |
10 17 20 21
|
syl3anc |
|
23 |
1 2 3 4 5 6 7
|
trlval2 |
|
24 |
10 11 18 23
|
syl3anc |
|
25 |
16 22 24
|
3eqtr3d |
|
26 |
25
|
oveq2d |
|
27 |
1 4 5 6
|
ltrncoat |
|
28 |
10 17 11 9 27
|
syl121anc |
|
29 |
|
eqid |
|
30 |
1 2 3 4 5 29
|
cdleme0cp |
|
31 |
10 20 28 30
|
syl12anc |
|
32 |
|
eqid |
|
33 |
1 2 3 4 5 32
|
cdleme0cq |
|
34 |
10 9 20 33
|
syl12anc |
|
35 |
26 31 34
|
3eqtr3rd |
|
36 |
15 35
|
breqtrd |
|
37 |
1 2 4
|
hlatlej2 |
|
38 |
8 13 28 37
|
syl3anc |
|
39 |
8
|
hllatd |
|
40 |
|
eqid |
|
41 |
40 4
|
atbase |
|
42 |
9 41
|
syl |
|
43 |
40 4
|
atbase |
|
44 |
28 43
|
syl |
|
45 |
40 2 4
|
hlatjcl |
|
46 |
8 13 28 45
|
syl3anc |
|
47 |
40 1 2
|
latjle12 |
|
48 |
39 42 44 46 47
|
syl13anc |
|
49 |
36 38 48
|
mpbi2and |
|
50 |
|
simp13 |
|
51 |
|
simp33 |
|
52 |
1 2 3 4 5 6
|
cdlemg11a |
|
53 |
10 18 50 17 11 51 52
|
syl123anc |
|
54 |
53
|
necomd |
|
55 |
1 2 4
|
ps-1 |
|
56 |
8 9 28 54 13 28 55
|
syl132anc |
|
57 |
49 56
|
mpbid |
|