Metamath Proof Explorer


Theorem cdlemg13a

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg13a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P = G P ˙ F G P

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q K HL
9 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P A
10 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q K HL W H
11 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G T
12 1 4 5 6 ltrnat K HL W H G T P A G P A
13 10 11 9 12 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P A
14 1 2 4 hlatlej1 K HL P A G P A P ˙ P ˙ G P
15 8 9 13 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ P ˙ G P
16 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R F = R G
17 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F T
18 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P A ¬ P ˙ W
19 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
20 10 11 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P A ¬ G P ˙ W
21 1 2 3 4 5 6 7 trlval2 K HL W H F T G P A ¬ G P ˙ W R F = G P ˙ F G P ˙ W
22 10 17 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R F = G P ˙ F G P ˙ W
23 1 2 3 4 5 6 7 trlval2 K HL W H G T P A ¬ P ˙ W R G = P ˙ G P ˙ W
24 10 11 18 23 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q R G = P ˙ G P ˙ W
25 16 22 24 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ F G P ˙ W = P ˙ G P ˙ W
26 25 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ G P ˙ F G P ˙ W = G P ˙ P ˙ G P ˙ W
27 1 4 5 6 ltrncoat K HL W H F T G T P A F G P A
28 10 17 11 9 27 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P A
29 eqid G P ˙ F G P ˙ W = G P ˙ F G P ˙ W
30 1 2 3 4 5 29 cdleme0cp K HL W H G P A ¬ G P ˙ W F G P A G P ˙ G P ˙ F G P ˙ W = G P ˙ F G P
31 10 20 28 30 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ G P ˙ F G P ˙ W = G P ˙ F G P
32 eqid P ˙ G P ˙ W = P ˙ G P ˙ W
33 1 2 3 4 5 32 cdleme0cq K HL W H P A G P A ¬ G P ˙ W G P ˙ P ˙ G P ˙ W = P ˙ G P
34 10 9 20 33 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ P ˙ G P ˙ W = P ˙ G P
35 26 31 34 3eqtr3rd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ G P = G P ˙ F G P
36 15 35 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ G P ˙ F G P
37 1 2 4 hlatlej2 K HL G P A F G P A F G P ˙ G P ˙ F G P
38 8 13 28 37 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P ˙ G P ˙ F G P
39 8 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q K Lat
40 eqid Base K = Base K
41 40 4 atbase P A P Base K
42 9 41 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P Base K
43 40 4 atbase F G P A F G P Base K
44 28 43 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P Base K
45 40 2 4 hlatjcl K HL G P A F G P A G P ˙ F G P Base K
46 8 13 28 45 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q G P ˙ F G P Base K
47 40 1 2 latjle12 K Lat P Base K F G P Base K G P ˙ F G P Base K P ˙ G P ˙ F G P F G P ˙ G P ˙ F G P P ˙ F G P ˙ G P ˙ F G P
48 39 42 44 46 47 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ G P ˙ F G P F G P ˙ G P ˙ F G P P ˙ F G P ˙ G P ˙ F G P
49 36 38 48 mpbi2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ G P ˙ F G P
50 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q Q A ¬ Q ˙ W
51 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q
52 1 2 3 4 5 6 cdlemg11a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P P
53 10 18 50 17 11 51 52 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q F G P P
54 53 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P F G P
55 1 2 4 ps-1 K HL P A F G P A P F G P G P A F G P A P ˙ F G P ˙ G P ˙ F G P P ˙ F G P = G P ˙ F G P
56 8 9 28 54 13 28 55 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P ˙ G P ˙ F G P P ˙ F G P = G P ˙ F G P
57 49 56 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P P R F = R G F G P ˙ F G Q P ˙ Q P ˙ F G P = G P ˙ F G P