Metamath Proof Explorer


Theorem cdlemg33b0

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg33b0 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rKHLWH
10 simp12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rPA¬P˙W
11 simp13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rQA¬Q˙W
12 simp22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rNA
13 simp21l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rvA
14 simp21r KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rv˙W
15 13 14 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rvAv˙W
16 simp23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rFT
17 simp32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rvRF
18 1 2 3 4 5 6 7 8 cdlemg31d KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNA¬N˙W
19 9 10 11 15 16 17 12 18 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙r¬N˙W
20 12 19 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rNA¬N˙W
21 simp31 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rPQ
22 nbrne2 v˙W¬N˙WvN
23 22 necomd v˙W¬N˙WNv
24 14 19 23 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rNv
25 13 24 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rvANv
26 simp33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
27 1 2 4 5 4atex3 KHLWHPA¬P˙WQA¬Q˙WNA¬N˙WPQvANvrA¬r˙WP˙r=Q˙rzA¬z˙WzNzvz˙N˙v
28 9 10 11 20 21 25 26 27 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzvz˙N˙v
29 df-3an zNzvz˙N˙vzNzvz˙N˙v
30 simpl zNzvzN
31 30 a1i KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAzNzvzN
32 simp12l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rPA
33 simp13l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rQA
34 1 2 3 4 5 6 7 8 cdlemg31a KHLWHPAQAvAFTN˙P˙v
35 9 32 33 13 16 34 syl122anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rN˙P˙v
36 simp11l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rKHL
37 1 2 4 hlatlej2 KHLPAvAv˙P˙v
38 36 32 13 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rv˙P˙v
39 36 hllatd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rKLat
40 eqid BaseK=BaseK
41 40 4 atbase NANBaseK
42 12 41 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rNBaseK
43 40 4 atbase vAvBaseK
44 13 43 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rvBaseK
45 40 2 4 hlatjcl KHLPAvAP˙vBaseK
46 36 32 13 45 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rP˙vBaseK
47 40 1 2 latjle12 KLatNBaseKvBaseKP˙vBaseKN˙P˙vv˙P˙vN˙v˙P˙v
48 39 42 44 46 47 syl13anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rN˙P˙vv˙P˙vN˙v˙P˙v
49 35 38 48 mpbi2and KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rN˙v˙P˙v
50 49 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAN˙v˙P˙v
51 39 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAKLat
52 40 4 atbase zAzBaseK
53 52 adantl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAzBaseK
54 40 2 4 hlatjcl KHLNAvAN˙vBaseK
55 36 12 13 54 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rN˙vBaseK
56 55 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAN˙vBaseK
57 46 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAP˙vBaseK
58 40 1 lattr KLatzBaseKN˙vBaseKP˙vBaseKz˙N˙vN˙v˙P˙vz˙P˙v
59 51 53 56 57 58 syl13anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAz˙N˙vN˙v˙P˙vz˙P˙v
60 50 59 mpan2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAz˙N˙vz˙P˙v
61 31 60 anim12d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAzNzvz˙N˙vzNz˙P˙v
62 29 61 biimtrid KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzAzNzvz˙N˙vzNz˙P˙v
63 62 anim2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzvz˙N˙v¬z˙WzNz˙P˙v
64 63 reximdva KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzvz˙N˙vzA¬z˙WzNz˙P˙v
65 28 64 mpd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v