Description: Lemma for cdlemkid . (Contributed by NM, 24-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
Assertion | cdlemkid2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | simp32 | |
|
12 | 11 | csbeq1d | |
13 | 1 6 7 | idltrn | |
14 | 13 | 3ad2ant1 | |
15 | 10 | cdlemk41 | |
16 | 14 15 | syl | |
17 | eqid | |
|
18 | 1 17 6 8 | trlid0 | |
19 | 18 | 3ad2ant1 | |
20 | 19 | oveq2d | |
21 | simp1l | |
|
22 | hlol | |
|
23 | 21 22 | syl | |
24 | simp31l | |
|
25 | 1 5 | atbase | |
26 | 24 25 | syl | |
27 | 1 3 17 | olj01 | |
28 | 23 26 27 | syl2anc | |
29 | 20 28 | eqtrd | |
30 | simp1 | |
|
31 | simp33l | |
|
32 | 6 7 | ltrncnv | |
33 | 30 31 32 | syl2anc | |
34 | 1 6 7 | ltrn1o | |
35 | 30 33 34 | syl2anc | |
36 | f1of | |
|
37 | fcoi2 | |
|
38 | 35 36 37 | 3syl | |
39 | 38 | fveq2d | |
40 | 6 7 8 | trlcnv | |
41 | 30 31 40 | syl2anc | |
42 | 39 41 | eqtrd | |
43 | 42 | oveq2d | |
44 | simp31 | |
|
45 | simp33 | |
|
46 | 44 45 | jca | |
47 | 1 2 3 4 5 6 7 8 9 | cdlemkid1 | |
48 | 46 47 | syld3an3 | |
49 | 43 48 | eqtrd | |
50 | 29 49 | oveq12d | |
51 | 21 | hllatd | |
52 | 1 6 7 8 | trlcl | |
53 | 30 31 52 | syl2anc | |
54 | 1 3 4 | latabs2 | |
55 | 51 26 53 54 | syl3anc | |
56 | 50 55 | eqtrd | |
57 | 16 56 | eqtrd | |
58 | 12 57 | eqtrd | |