Description: Lemma for cfcof , showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cfcoflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cff1 | |
|
2 | f1f | |
|
3 | fco | |
|
4 | 3 | adantlr | |
5 | r19.29 | |
|
6 | ffvelcdm | |
|
7 | ffn | |
|
8 | smoword | |
|
9 | 8 | biimpd | |
10 | 9 | exp32 | |
11 | 7 10 | sylan | |
12 | 6 11 | syl7 | |
13 | 12 | com23 | |
14 | 13 | expdimp | |
15 | 14 | 3imp2 | |
16 | sstr2 | |
|
17 | 15 16 | syl5com | |
18 | fvco3 | |
|
19 | 18 | sseq2d | |
20 | 19 | adantll | |
21 | 20 | 3ad2antr1 | |
22 | 17 21 | sylibrd | |
23 | 22 | expcom | |
24 | 23 | 3expia | |
25 | 24 | com4t | |
26 | 25 | imp | |
27 | 26 | expcomd | |
28 | 27 | imp31 | |
29 | 28 | reximdva | |
30 | 29 | exp31 | |
31 | 30 | com34 | |
32 | 31 | impcomd | |
33 | 32 | com23 | |
34 | 33 | rexlimdv | |
35 | 5 34 | syl5 | |
36 | 35 | expdimp | |
37 | 36 | ralimdv | |
38 | 37 | impr | |
39 | vex | |
|
40 | vex | |
|
41 | 39 40 | coex | |
42 | feq1 | |
|
43 | fveq1 | |
|
44 | 43 | sseq2d | |
45 | 44 | rexbidv | |
46 | 45 | ralbidv | |
47 | 42 46 | anbi12d | |
48 | 41 47 | spcev | |
49 | 4 38 48 | syl2an2r | |
50 | 49 | exp43 | |
51 | 50 | com24 | |
52 | 51 | 3impia | |
53 | 52 | exlimiv | |
54 | 53 | com13 | |
55 | 2 54 | syl | |
56 | 55 | imp | |
57 | 56 | exlimiv | |
58 | 1 57 | syl | |
59 | cfon | |
|
60 | cfflb | |
|
61 | 59 60 | mpan2 | |
62 | 58 61 | sylan9r | |