Metamath Proof Explorer


Theorem cfcoflem

Description: Lemma for cfcof , showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion cfcoflem AOnBOnff:BASmofxAyBxfycfAcfB

Proof

Step Hyp Ref Expression
1 cff1 BOngg:cfB1-1ByBzcfBygz
2 f1f g:cfB1-1Bg:cfBB
3 fco f:BAg:cfBBfg:cfBA
4 3 adantlr f:BASmofg:cfBBfg:cfBA
5 r19.29 yBzcfBygzyBxfyyBzcfBygzxfy
6 ffvelcdm g:cfBBzcfBgzB
7 ffn f:BAfFnB
8 smoword fFnBSmofyBgzBygzfyfgz
9 8 biimpd fFnBSmofyBgzBygzfyfgz
10 9 exp32 fFnBSmofyBgzBygzfyfgz
11 7 10 sylan f:BASmofyBgzBygzfyfgz
12 6 11 syl7 f:BASmofyBg:cfBBzcfBygzfyfgz
13 12 com23 f:BASmofg:cfBBzcfByBygzfyfgz
14 13 expdimp f:BASmofg:cfBBzcfByBygzfyfgz
15 14 3imp2 f:BASmofg:cfBBzcfByBygzfyfgz
16 sstr2 xfyfyfgzxfgz
17 15 16 syl5com f:BASmofg:cfBBzcfByBygzxfyxfgz
18 fvco3 g:cfBBzcfBfgz=fgz
19 18 sseq2d g:cfBBzcfBxfgzxfgz
20 19 adantll f:BASmofg:cfBBzcfBxfgzxfgz
21 20 3ad2antr1 f:BASmofg:cfBBzcfByBygzxfgzxfgz
22 17 21 sylibrd f:BASmofg:cfBBzcfByBygzxfyxfgz
23 22 expcom zcfByBygzf:BASmofg:cfBBxfyxfgz
24 23 3expia zcfByBygzf:BASmofg:cfBBxfyxfgz
25 24 com4t f:BASmofg:cfBBxfyzcfByBygzxfgz
26 25 imp f:BASmofg:cfBBxfyzcfByBygzxfgz
27 26 expcomd f:BASmofg:cfBBxfyyBzcfBygzxfgz
28 27 imp31 f:BASmofg:cfBBxfyyBzcfBygzxfgz
29 28 reximdva f:BASmofg:cfBBxfyyBzcfBygzzcfBxfgz
30 29 exp31 f:BASmofg:cfBBxfyyBzcfBygzzcfBxfgz
31 30 com34 f:BASmofg:cfBBxfyzcfBygzyBzcfBxfgz
32 31 impcomd f:BASmofg:cfBBzcfBygzxfyyBzcfBxfgz
33 32 com23 f:BASmofg:cfBByBzcfBygzxfyzcfBxfgz
34 33 rexlimdv f:BASmofg:cfBByBzcfBygzxfyzcfBxfgz
35 5 34 syl5 f:BASmofg:cfBByBzcfBygzyBxfyzcfBxfgz
36 35 expdimp f:BASmofg:cfBByBzcfBygzyBxfyzcfBxfgz
37 36 ralimdv f:BASmofg:cfBByBzcfBygzxAyBxfyxAzcfBxfgz
38 37 impr f:BASmofg:cfBByBzcfBygzxAyBxfyxAzcfBxfgz
39 vex fV
40 vex gV
41 39 40 coex fgV
42 feq1 h=fgh:cfBAfg:cfBA
43 fveq1 h=fghz=fgz
44 43 sseq2d h=fgxhzxfgz
45 44 rexbidv h=fgzcfBxhzzcfBxfgz
46 45 ralbidv h=fgxAzcfBxhzxAzcfBxfgz
47 42 46 anbi12d h=fgh:cfBAxAzcfBxhzfg:cfBAxAzcfBxfgz
48 41 47 spcev fg:cfBAxAzcfBxfgzhh:cfBAxAzcfBxhz
49 4 38 48 syl2an2r f:BASmofg:cfBByBzcfBygzxAyBxfyhh:cfBAxAzcfBxhz
50 49 exp43 f:BASmofg:cfBByBzcfBygzxAyBxfyhh:cfBAxAzcfBxhz
51 50 com24 f:BASmofxAyBxfyyBzcfBygzg:cfBBhh:cfBAxAzcfBxhz
52 51 3impia f:BASmofxAyBxfyyBzcfBygzg:cfBBhh:cfBAxAzcfBxhz
53 52 exlimiv ff:BASmofxAyBxfyyBzcfBygzg:cfBBhh:cfBAxAzcfBxhz
54 53 com13 g:cfBByBzcfBygzff:BASmofxAyBxfyhh:cfBAxAzcfBxhz
55 2 54 syl g:cfB1-1ByBzcfBygzff:BASmofxAyBxfyhh:cfBAxAzcfBxhz
56 55 imp g:cfB1-1ByBzcfBygzff:BASmofxAyBxfyhh:cfBAxAzcfBxhz
57 56 exlimiv gg:cfB1-1ByBzcfBygzff:BASmofxAyBxfyhh:cfBAxAzcfBxhz
58 1 57 syl BOnff:BASmofxAyBxfyhh:cfBAxAzcfBxhz
59 cfon cfBOn
60 cfflb AOncfBOnhh:cfBAxAzcfBxhzcfAcfB
61 59 60 mpan2 AOnhh:cfBAxAzcfBxhzcfAcfB
62 58 61 sylan9r AOnBOnff:BASmofxAyBxfycfAcfB