Metamath Proof Explorer


Theorem cfslb2n

Description: Any small collection of small subsets of A cannot have union A , where "small" means smaller than the cofinality. This is a stronger version of cfslb . This is a common application of cofinality: under AC, ( aleph1 ) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 AV
Assertion cfslb2n LimAxBxAxcfABcfABA

Proof

Step Hyp Ref Expression
1 cfslb.1 AV
2 limord LimAOrdA
3 ordsson OrdAAOn
4 sstr xAAOnxOn
5 4 expcom AOnxAxOn
6 2 3 5 3syl LimAxAxOn
7 onsucuni xOnxsucx
8 6 7 syl6 LimAxAxsucx
9 8 adantrd LimAxAxcfAxsucx
10 9 ralimdv LimAxBxAxcfAxBxsucx
11 uniiun B=xBx
12 ss2iun xBxsucxxBxxBsucx
13 11 12 eqsstrid xBxsucxBxBsucx
14 10 13 syl6 LimAxBxAxcfABxBsucx
15 14 imp LimAxBxAxcfABxBsucx
16 1 cfslbn LimAxAxcfAxA
17 16 3expib LimAxAxcfAxA
18 ordsucss OrdAxAsucxA
19 2 17 18 sylsyld LimAxAxcfAsucxA
20 19 ralimdv LimAxBxAxcfAxBsucxA
21 iunss xBsucxAxBsucxA
22 20 21 syl6ibr LimAxBxAxcfAxBsucxA
23 22 imp LimAxBxAxcfAxBsucxA
24 sseq1 B=ABxBsucxAxBsucx
25 eqss xBsucx=AxBsucxAAxBsucx
26 25 simplbi2com AxBsucxxBsucxAxBsucx=A
27 24 26 syl6bi B=ABxBsucxxBsucxAxBsucx=A
28 27 com3l BxBsucxxBsucxAB=AxBsucx=A
29 15 23 28 sylc LimAxBxAxcfAB=AxBsucx=A
30 limsuc LimAxAsucxA
31 17 30 sylibd LimAxAxcfAsucxA
32 31 ralimdv LimAxBxAxcfAxBsucxA
33 32 imp LimAxBxAxcfAxBsucxA
34 r19.29 xBsucxAxBy=sucxxBsucxAy=sucx
35 eleq1 y=sucxyAsucxA
36 35 biimparc sucxAy=sucxyA
37 36 rexlimivw xBsucxAy=sucxyA
38 34 37 syl xBsucxAxBy=sucxyA
39 38 ex xBsucxAxBy=sucxyA
40 33 39 syl LimAxBxAxcfAxBy=sucxyA
41 40 abssdv LimAxBxAxcfAy|xBy=sucxA
42 vuniex xV
43 42 sucex sucxV
44 43 dfiun2 xBsucx=y|xBy=sucx
45 44 eqeq1i xBsucx=Ay|xBy=sucx=A
46 1 cfslb LimAy|xBy=sucxAy|xBy=sucx=AcfAy|xBy=sucx
47 46 3expia LimAy|xBy=sucxAy|xBy=sucx=AcfAy|xBy=sucx
48 45 47 biimtrid LimAy|xBy=sucxAxBsucx=AcfAy|xBy=sucx
49 41 48 syldan LimAxBxAxcfAxBsucx=AcfAy|xBy=sucx
50 eqid xBsucx=xBsucx
51 50 rnmpt ranxBsucx=y|xBy=sucx
52 43 50 fnmpti xBsucxFnB
53 dffn4 xBsucxFnBxBsucx:BontoranxBsucx
54 52 53 mpbi xBsucx:BontoranxBsucx
55 relsdom Rel
56 55 brrelex1i BcfABV
57 breq1 y=BycfABcfA
58 foeq2 y=BxBsucx:yontoranxBsucxxBsucx:BontoranxBsucx
59 breq2 y=BranxBsucxyranxBsucxB
60 58 59 imbi12d y=BxBsucx:yontoranxBsucxranxBsucxyxBsucx:BontoranxBsucxranxBsucxB
61 57 60 imbi12d y=BycfAxBsucx:yontoranxBsucxranxBsucxyBcfAxBsucx:BontoranxBsucxranxBsucxB
62 cfon cfAOn
63 sdomdom ycfAycfA
64 ondomen cfAOnycfAydomcard
65 62 63 64 sylancr ycfAydomcard
66 fodomnum ydomcardxBsucx:yontoranxBsucxranxBsucxy
67 65 66 syl ycfAxBsucx:yontoranxBsucxranxBsucxy
68 61 67 vtoclg BVBcfAxBsucx:BontoranxBsucxranxBsucxB
69 56 68 mpcom BcfAxBsucx:BontoranxBsucxranxBsucxB
70 54 69 mpi BcfAranxBsucxB
71 51 70 eqbrtrrid BcfAy|xBy=sucxB
72 domtr cfAy|xBy=sucxy|xBy=sucxBcfAB
73 71 72 sylan2 cfAy|xBy=sucxBcfAcfAB
74 domnsym cfAB¬BcfA
75 73 74 syl cfAy|xBy=sucxBcfA¬BcfA
76 75 pm2.01da cfAy|xBy=sucx¬BcfA
77 76 a1i LimAxBxAxcfAcfAy|xBy=sucx¬BcfA
78 29 49 77 3syld LimAxBxAxcfAB=A¬BcfA
79 78 necon2ad LimAxBxAxcfABcfABA