Metamath Proof Explorer


Theorem chirredi

Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 AC
chirred.2 xCA𝐶x
Assertion chirredi A=0A=

Proof

Step Hyp Ref Expression
1 chirred.1 AC
2 chirred.2 xCA𝐶x
3 eqid 0=0
4 ioran ¬A=0A=0¬A=0¬A=0
5 df-ne A0¬A=0
6 df-ne A0¬A=0
7 5 6 anbi12i A0A0¬A=0¬A=0
8 4 7 bitr4i ¬A=0A=0A0A0
9 1 hatomici A0pHAtomspA
10 1 choccli AC
11 10 hatomici A0qHAtomsqA
12 9 11 anim12i A0A0pHAtomspAqHAtomsqA
13 reeanv pHAtomsqHAtomspAqApHAtomspAqHAtomsqA
14 12 13 sylibr A0A0pHAtomsqHAtomspAqA
15 simpll pHAtomspAqHAtomsqApHAtoms
16 simprl pHAtomspAqHAtomsqAqHAtoms
17 atelch pHAtomspC
18 chsscon3 pCACpAAp
19 17 1 18 sylancl pHAtomspAAp
20 19 biimpa pHAtomspAAp
21 sstr qAApqp
22 20 21 sylan2 qApHAtomspAqp
23 22 ancoms pHAtomspAqAqp
24 atne0 pHAtomsp0
25 24 adantr pHAtomsqpp0
26 sseq1 p=qppqp
27 26 bicomd p=qqppp
28 chssoc pCppp=0
29 17 28 syl pHAtomsppp=0
30 27 29 sylan9bbr pHAtomsp=qqpp=0
31 30 biimpa pHAtomsp=qqpp=0
32 31 an32s pHAtomsqpp=qp=0
33 32 ex pHAtomsqpp=qp=0
34 33 necon3d pHAtomsqpp0pq
35 25 34 mpd pHAtomsqppq
36 35 adantlr pHAtomspAqppq
37 23 36 syldan pHAtomspAqApq
38 37 adantrl pHAtomspAqHAtomsqApq
39 superpos pHAtomsqHAtomspqrHAtomsrprqrpq
40 15 16 38 39 syl3anc pHAtomspAqHAtomsqArHAtomsrprqrpq
41 df-3an rprqrpqrprqrpq
42 neanior rprq¬r=pr=q
43 42 anbi1i rprqrpq¬r=pr=qrpq
44 41 43 bitri rprqrpq¬r=pr=qrpq
45 1 2 chirredlem4 pHAtomspAqHAtomsqArHAtomsrpqr=pr=q
46 45 anassrs pHAtomspAqHAtomsqArHAtomsrpqr=pr=q
47 46 pm2.24d pHAtomspAqHAtomsqArHAtomsrpq¬r=pr=q¬0=0
48 47 ex pHAtomspAqHAtomsqArHAtomsrpq¬r=pr=q¬0=0
49 48 com23 pHAtomspAqHAtomsqArHAtoms¬r=pr=qrpq¬0=0
50 49 impd pHAtomspAqHAtomsqArHAtoms¬r=pr=qrpq¬0=0
51 44 50 biimtrid pHAtomspAqHAtomsqArHAtomsrprqrpq¬0=0
52 51 rexlimdva pHAtomspAqHAtomsqArHAtomsrprqrpq¬0=0
53 40 52 mpd pHAtomspAqHAtomsqA¬0=0
54 53 an4s pHAtomsqHAtomspAqA¬0=0
55 54 ex pHAtomsqHAtomspAqA¬0=0
56 55 rexlimivv pHAtomsqHAtomspAqA¬0=0
57 14 56 syl A0A0¬0=0
58 8 57 sylbi ¬A=0A=0¬0=0
59 3 58 mt4 A=0A=0
60 fveq2 A=0A=0
61 1 ococi A=A
62 choc0 0=
63 60 61 62 3eqtr3g A=0A=
64 63 orim2i A=0A=0A=0A=
65 59 64 ax-mp A=0A=