Metamath Proof Explorer


Theorem chirredi

Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chirred.1 A C
chirred.2 x C A 𝐶 x
Assertion chirredi A = 0 A =

Proof

Step Hyp Ref Expression
1 chirred.1 A C
2 chirred.2 x C A 𝐶 x
3 eqid 0 = 0
4 ioran ¬ A = 0 A = 0 ¬ A = 0 ¬ A = 0
5 df-ne A 0 ¬ A = 0
6 df-ne A 0 ¬ A = 0
7 5 6 anbi12i A 0 A 0 ¬ A = 0 ¬ A = 0
8 4 7 bitr4i ¬ A = 0 A = 0 A 0 A 0
9 1 hatomici A 0 p HAtoms p A
10 1 choccli A C
11 10 hatomici A 0 q HAtoms q A
12 9 11 anim12i A 0 A 0 p HAtoms p A q HAtoms q A
13 reeanv p HAtoms q HAtoms p A q A p HAtoms p A q HAtoms q A
14 12 13 sylibr A 0 A 0 p HAtoms q HAtoms p A q A
15 simpll p HAtoms p A q HAtoms q A p HAtoms
16 simprl p HAtoms p A q HAtoms q A q HAtoms
17 atelch p HAtoms p C
18 chsscon3 p C A C p A A p
19 17 1 18 sylancl p HAtoms p A A p
20 19 biimpa p HAtoms p A A p
21 sstr q A A p q p
22 20 21 sylan2 q A p HAtoms p A q p
23 22 ancoms p HAtoms p A q A q p
24 atne0 p HAtoms p 0
25 24 adantr p HAtoms q p p 0
26 sseq1 p = q p p q p
27 26 bicomd p = q q p p p
28 chssoc p C p p p = 0
29 17 28 syl p HAtoms p p p = 0
30 27 29 sylan9bbr p HAtoms p = q q p p = 0
31 30 biimpa p HAtoms p = q q p p = 0
32 31 an32s p HAtoms q p p = q p = 0
33 32 ex p HAtoms q p p = q p = 0
34 33 necon3d p HAtoms q p p 0 p q
35 25 34 mpd p HAtoms q p p q
36 35 adantlr p HAtoms p A q p p q
37 23 36 syldan p HAtoms p A q A p q
38 37 adantrl p HAtoms p A q HAtoms q A p q
39 superpos p HAtoms q HAtoms p q r HAtoms r p r q r p q
40 15 16 38 39 syl3anc p HAtoms p A q HAtoms q A r HAtoms r p r q r p q
41 df-3an r p r q r p q r p r q r p q
42 neanior r p r q ¬ r = p r = q
43 42 anbi1i r p r q r p q ¬ r = p r = q r p q
44 41 43 bitri r p r q r p q ¬ r = p r = q r p q
45 1 2 chirredlem4 p HAtoms p A q HAtoms q A r HAtoms r p q r = p r = q
46 45 anassrs p HAtoms p A q HAtoms q A r HAtoms r p q r = p r = q
47 46 pm2.24d p HAtoms p A q HAtoms q A r HAtoms r p q ¬ r = p r = q ¬ 0 = 0
48 47 ex p HAtoms p A q HAtoms q A r HAtoms r p q ¬ r = p r = q ¬ 0 = 0
49 48 com23 p HAtoms p A q HAtoms q A r HAtoms ¬ r = p r = q r p q ¬ 0 = 0
50 49 impd p HAtoms p A q HAtoms q A r HAtoms ¬ r = p r = q r p q ¬ 0 = 0
51 44 50 syl5bi p HAtoms p A q HAtoms q A r HAtoms r p r q r p q ¬ 0 = 0
52 51 rexlimdva p HAtoms p A q HAtoms q A r HAtoms r p r q r p q ¬ 0 = 0
53 40 52 mpd p HAtoms p A q HAtoms q A ¬ 0 = 0
54 53 an4s p HAtoms q HAtoms p A q A ¬ 0 = 0
55 54 ex p HAtoms q HAtoms p A q A ¬ 0 = 0
56 55 rexlimivv p HAtoms q HAtoms p A q A ¬ 0 = 0
57 14 56 syl A 0 A 0 ¬ 0 = 0
58 8 57 sylbi ¬ A = 0 A = 0 ¬ 0 = 0
59 3 58 mt4 A = 0 A = 0
60 fveq2 A = 0 A = 0
61 1 ococi A = A
62 choc0 0 =
63 60 61 62 3eqtr3g A = 0 A =
64 63 orim2i A = 0 A = 0 A = 0 A =
65 59 64 ax-mp A = 0 A =