Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of BeltramettiCassinelli p. 166. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chirred.1 | |
|
chirred.2 | |
||
Assertion | chirredi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chirred.1 | |
|
2 | chirred.2 | |
|
3 | eqid | |
|
4 | ioran | |
|
5 | df-ne | |
|
6 | df-ne | |
|
7 | 5 6 | anbi12i | |
8 | 4 7 | bitr4i | |
9 | 1 | hatomici | |
10 | 1 | choccli | |
11 | 10 | hatomici | |
12 | 9 11 | anim12i | |
13 | reeanv | |
|
14 | 12 13 | sylibr | |
15 | simpll | |
|
16 | simprl | |
|
17 | atelch | |
|
18 | chsscon3 | |
|
19 | 17 1 18 | sylancl | |
20 | 19 | biimpa | |
21 | sstr | |
|
22 | 20 21 | sylan2 | |
23 | 22 | ancoms | |
24 | atne0 | |
|
25 | 24 | adantr | |
26 | sseq1 | |
|
27 | 26 | bicomd | |
28 | chssoc | |
|
29 | 17 28 | syl | |
30 | 27 29 | sylan9bbr | |
31 | 30 | biimpa | |
32 | 31 | an32s | |
33 | 32 | ex | |
34 | 33 | necon3d | |
35 | 25 34 | mpd | |
36 | 35 | adantlr | |
37 | 23 36 | syldan | |
38 | 37 | adantrl | |
39 | superpos | |
|
40 | 15 16 38 39 | syl3anc | |
41 | df-3an | |
|
42 | neanior | |
|
43 | 42 | anbi1i | |
44 | 41 43 | bitri | |
45 | 1 2 | chirredlem4 | |
46 | 45 | anassrs | |
47 | 46 | pm2.24d | |
48 | 47 | ex | |
49 | 48 | com23 | |
50 | 49 | impd | |
51 | 44 50 | biimtrid | |
52 | 51 | rexlimdva | |
53 | 40 52 | mpd | |
54 | 53 | an4s | |
55 | 54 | ex | |
56 | 55 | rexlimivv | |
57 | 14 56 | syl | |
58 | 8 57 | sylbi | |
59 | 3 58 | mt4 | |
60 | fveq2 | |
|
61 | 1 | ococi | |
62 | choc0 | |
|
63 | 60 61 62 | 3eqtr3g | |
64 | 63 | orim2i | |
65 | 59 64 | ax-mp | |