Step |
Hyp |
Ref |
Expression |
1 |
|
chmatcl.a |
|
2 |
|
chmatcl.b |
|
3 |
|
chmatcl.p |
|
4 |
|
chmatcl.y |
|
5 |
|
chmatcl.x |
|
6 |
|
chmatcl.t |
|
7 |
|
chmatcl.s |
|
8 |
|
chmatcl.m |
|
9 |
|
chmatcl.1 |
|
10 |
|
chmatcl.h |
|
11 |
|
chmatval.s |
|
12 |
|
chmatval.0 |
|
13 |
10
|
oveqi |
|
14 |
3
|
ply1ring |
|
15 |
14
|
3ad2ant2 |
|
16 |
15
|
adantr |
|
17 |
14
|
anim2i |
|
18 |
17
|
3adant3 |
|
19 |
|
eqid |
|
20 |
5 3 19
|
vr1cl |
|
21 |
20
|
3ad2ant2 |
|
22 |
3 4
|
pmatring |
|
23 |
22
|
3adant3 |
|
24 |
|
eqid |
|
25 |
24 9
|
ringidcl |
|
26 |
23 25
|
syl |
|
27 |
19 4 24 8
|
matvscl |
|
28 |
18 21 26 27
|
syl12anc |
|
29 |
28
|
adantr |
|
30 |
6 1 2 3 4
|
mat2pmatbas |
|
31 |
30
|
adantr |
|
32 |
|
simpr |
|
33 |
4 24 7 11
|
matsubgcell |
|
34 |
16 29 31 32 33
|
syl121anc |
|
35 |
13 34
|
eqtrid |
|
36 |
9
|
a1i |
|
37 |
36
|
oveq2d |
|
38 |
|
simpl |
|
39 |
14
|
adantl |
|
40 |
20
|
adantl |
|
41 |
38 39 40
|
3jca |
|
42 |
41
|
3adant3 |
|
43 |
42
|
adantr |
|
44 |
4 19 8 12
|
matsc |
|
45 |
43 44
|
syl |
|
46 |
37 45
|
eqtrd |
|
47 |
|
eqeq12 |
|
48 |
47
|
ifbid |
|
49 |
48
|
adantl |
|
50 |
|
simprl |
|
51 |
|
simpr |
|
52 |
51
|
adantl |
|
53 |
5
|
fvexi |
|
54 |
12
|
fvexi |
|
55 |
53 54
|
ifex |
|
56 |
55
|
a1i |
|
57 |
46 49 50 52 56
|
ovmpod |
|
58 |
57
|
oveq1d |
|
59 |
|
ovif |
|
60 |
58 59
|
eqtrdi |
|
61 |
35 60
|
eqtrd |
|