Metamath Proof Explorer


Theorem chmatval

Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019) (Proof shortened by AV, 10-Dec-2019)

Ref Expression
Hypotheses chmatcl.a A=NMatR
chmatcl.b B=BaseA
chmatcl.p P=Poly1R
chmatcl.y Y=NMatP
chmatcl.x X=var1R
chmatcl.t T=NmatToPolyMatR
chmatcl.s -˙=-Y
chmatcl.m ·˙=Y
chmatcl.1 1˙=1Y
chmatcl.h H=X·˙1˙-˙TM
chmatval.s ˙=-P
chmatval.0 0˙=0P
Assertion chmatval NFinRRingMBINJNIHJ=ifI=JX˙ITMJ0˙˙ITMJ

Proof

Step Hyp Ref Expression
1 chmatcl.a A=NMatR
2 chmatcl.b B=BaseA
3 chmatcl.p P=Poly1R
4 chmatcl.y Y=NMatP
5 chmatcl.x X=var1R
6 chmatcl.t T=NmatToPolyMatR
7 chmatcl.s -˙=-Y
8 chmatcl.m ·˙=Y
9 chmatcl.1 1˙=1Y
10 chmatcl.h H=X·˙1˙-˙TM
11 chmatval.s ˙=-P
12 chmatval.0 0˙=0P
13 10 oveqi IHJ=IX·˙1˙-˙TMJ
14 3 ply1ring RRingPRing
15 14 3ad2ant2 NFinRRingMBPRing
16 15 adantr NFinRRingMBINJNPRing
17 14 anim2i NFinRRingNFinPRing
18 17 3adant3 NFinRRingMBNFinPRing
19 eqid BaseP=BaseP
20 5 3 19 vr1cl RRingXBaseP
21 20 3ad2ant2 NFinRRingMBXBaseP
22 3 4 pmatring NFinRRingYRing
23 22 3adant3 NFinRRingMBYRing
24 eqid BaseY=BaseY
25 24 9 ringidcl YRing1˙BaseY
26 23 25 syl NFinRRingMB1˙BaseY
27 19 4 24 8 matvscl NFinPRingXBaseP1˙BaseYX·˙1˙BaseY
28 18 21 26 27 syl12anc NFinRRingMBX·˙1˙BaseY
29 28 adantr NFinRRingMBINJNX·˙1˙BaseY
30 6 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
31 30 adantr NFinRRingMBINJNTMBaseY
32 simpr NFinRRingMBINJNINJN
33 4 24 7 11 matsubgcell PRingX·˙1˙BaseYTMBaseYINJNIX·˙1˙-˙TMJ=IX·˙1˙J˙ITMJ
34 16 29 31 32 33 syl121anc NFinRRingMBINJNIX·˙1˙-˙TMJ=IX·˙1˙J˙ITMJ
35 13 34 eqtrid NFinRRingMBINJNIHJ=IX·˙1˙J˙ITMJ
36 9 a1i NFinRRingMBINJN1˙=1Y
37 36 oveq2d NFinRRingMBINJNX·˙1˙=X·˙1Y
38 simpl NFinRRingNFin
39 14 adantl NFinRRingPRing
40 20 adantl NFinRRingXBaseP
41 38 39 40 3jca NFinRRingNFinPRingXBaseP
42 41 3adant3 NFinRRingMBNFinPRingXBaseP
43 42 adantr NFinRRingMBINJNNFinPRingXBaseP
44 4 19 8 12 matsc NFinPRingXBasePX·˙1Y=iN,jNifi=jX0˙
45 43 44 syl NFinRRingMBINJNX·˙1Y=iN,jNifi=jX0˙
46 37 45 eqtrd NFinRRingMBINJNX·˙1˙=iN,jNifi=jX0˙
47 eqeq12 i=Ij=Ji=jI=J
48 47 ifbid i=Ij=Jifi=jX0˙=ifI=JX0˙
49 48 adantl NFinRRingMBINJNi=Ij=Jifi=jX0˙=ifI=JX0˙
50 simprl NFinRRingMBINJNIN
51 simpr INJNJN
52 51 adantl NFinRRingMBINJNJN
53 5 fvexi XV
54 12 fvexi 0˙V
55 53 54 ifex ifI=JX0˙V
56 55 a1i NFinRRingMBINJNifI=JX0˙V
57 46 49 50 52 56 ovmpod NFinRRingMBINJNIX·˙1˙J=ifI=JX0˙
58 57 oveq1d NFinRRingMBINJNIX·˙1˙J˙ITMJ=ifI=JX0˙˙ITMJ
59 ovif ifI=JX0˙˙ITMJ=ifI=JX˙ITMJ0˙˙ITMJ
60 58 59 eqtrdi NFinRRingMBINJNIX·˙1˙J˙ITMJ=ifI=JX˙ITMJ0˙˙ITMJ
61 35 60 eqtrd NFinRRingMBINJNIHJ=ifI=JX˙ITMJ0˙˙ITMJ