Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019) (Proof shortened by AV, 10-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chmatcl.a | |
|
chmatcl.b | |
||
chmatcl.p | |
||
chmatcl.y | |
||
chmatcl.x | |
||
chmatcl.t | |
||
chmatcl.s | |
||
chmatcl.m | |
||
chmatcl.1 | |
||
chmatcl.h | |
||
chmatval.s | |
||
chmatval.0 | |
||
Assertion | chmatval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chmatcl.a | |
|
2 | chmatcl.b | |
|
3 | chmatcl.p | |
|
4 | chmatcl.y | |
|
5 | chmatcl.x | |
|
6 | chmatcl.t | |
|
7 | chmatcl.s | |
|
8 | chmatcl.m | |
|
9 | chmatcl.1 | |
|
10 | chmatcl.h | |
|
11 | chmatval.s | |
|
12 | chmatval.0 | |
|
13 | 10 | oveqi | |
14 | 3 | ply1ring | |
15 | 14 | 3ad2ant2 | |
16 | 15 | adantr | |
17 | 14 | anim2i | |
18 | 17 | 3adant3 | |
19 | eqid | |
|
20 | 5 3 19 | vr1cl | |
21 | 20 | 3ad2ant2 | |
22 | 3 4 | pmatring | |
23 | 22 | 3adant3 | |
24 | eqid | |
|
25 | 24 9 | ringidcl | |
26 | 23 25 | syl | |
27 | 19 4 24 8 | matvscl | |
28 | 18 21 26 27 | syl12anc | |
29 | 28 | adantr | |
30 | 6 1 2 3 4 | mat2pmatbas | |
31 | 30 | adantr | |
32 | simpr | |
|
33 | 4 24 7 11 | matsubgcell | |
34 | 16 29 31 32 33 | syl121anc | |
35 | 13 34 | eqtrid | |
36 | 9 | a1i | |
37 | 36 | oveq2d | |
38 | simpl | |
|
39 | 14 | adantl | |
40 | 20 | adantl | |
41 | 38 39 40 | 3jca | |
42 | 41 | 3adant3 | |
43 | 42 | adantr | |
44 | 4 19 8 12 | matsc | |
45 | 43 44 | syl | |
46 | 37 45 | eqtrd | |
47 | eqeq12 | |
|
48 | 47 | ifbid | |
49 | 48 | adantl | |
50 | simprl | |
|
51 | simpr | |
|
52 | 51 | adantl | |
53 | 5 | fvexi | |
54 | 12 | fvexi | |
55 | 53 54 | ifex | |
56 | 55 | a1i | |
57 | 46 49 50 52 56 | ovmpod | |
58 | 57 | oveq1d | |
59 | ovif | |
|
60 | 58 59 | eqtrdi | |
61 | 35 60 | eqtrd | |