Description: Lemma 3 for chpdmat . (Contributed by AV, 18-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chpdmat.c | |
|
chpdmat.p | |
||
chpdmat.a | |
||
chpdmat.s | |
||
chpdmat.b | |
||
chpdmat.x | |
||
chpdmat.0 | |
||
chpdmat.g | |
||
chpdmat.m | |
||
chpdmatlem.q | |
||
chpdmatlem.1 | |
||
chpdmatlem.m | |
||
chpdmatlem.z | |
||
chpdmatlem.t | |
||
Assertion | chpdmatlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpdmat.c | |
|
2 | chpdmat.p | |
|
3 | chpdmat.a | |
|
4 | chpdmat.s | |
|
5 | chpdmat.b | |
|
6 | chpdmat.x | |
|
7 | chpdmat.0 | |
|
8 | chpdmat.g | |
|
9 | chpdmat.m | |
|
10 | chpdmatlem.q | |
|
11 | chpdmatlem.1 | |
|
12 | chpdmatlem.m | |
|
13 | chpdmatlem.z | |
|
14 | chpdmatlem.t | |
|
15 | 2 | ply1ring | |
16 | 15 | 3ad2ant2 | |
17 | 16 | adantr | |
18 | 1 2 3 4 5 6 7 8 9 10 11 12 | chpdmatlem0 | |
19 | 18 | 3adant3 | |
20 | 14 3 5 2 10 | mat2pmatbas | |
21 | 19 20 | jca | |
22 | 21 | adantr | |
23 | simpr | |
|
24 | eqid | |
|
25 | 10 24 13 9 | matsubgcell | |
26 | 17 22 23 23 25 | syl112anc | |
27 | eqid | |
|
28 | 6 2 27 | vr1cl | |
29 | 28 | adantl | |
30 | 2 10 | pmatring | |
31 | 24 11 | ringidcl | |
32 | 30 31 | syl | |
33 | 29 32 | jca | |
34 | 33 | 3adant3 | |
35 | 34 | adantr | |
36 | eqid | |
|
37 | 10 24 27 12 36 | matvscacell | |
38 | 17 35 23 23 37 | syl112anc | |
39 | eqid | |
|
40 | eqid | |
|
41 | simpl1 | |
|
42 | 10 39 40 41 17 23 23 11 | mat1ov | |
43 | eqid | |
|
44 | 43 | iftruei | |
45 | 42 44 | eqtrdi | |
46 | 45 | oveq2d | |
47 | 15 28 | jca | |
48 | 47 | 3ad2ant2 | |
49 | 27 36 39 | ringridm | |
50 | 48 49 | syl | |
51 | 50 | adantr | |
52 | 38 46 51 | 3eqtrd | |
53 | 14 3 5 2 4 | mat2pmatvalel | |
54 | 53 | anabsan2 | |
55 | 52 54 | oveq12d | |
56 | 26 55 | eqtrd | |