| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpdmat.c |
|
| 2 |
|
chpdmat.p |
|
| 3 |
|
chpdmat.a |
|
| 4 |
|
chpdmat.s |
|
| 5 |
|
chpdmat.b |
|
| 6 |
|
chpdmat.x |
|
| 7 |
|
chpdmat.0 |
|
| 8 |
|
chpdmat.g |
|
| 9 |
|
chpdmat.m |
|
| 10 |
|
chpdmatlem.q |
|
| 11 |
|
chpdmatlem.1 |
|
| 12 |
|
chpdmatlem.m |
|
| 13 |
|
chpdmatlem.z |
|
| 14 |
|
chpdmatlem.t |
|
| 15 |
2
|
ply1ring |
|
| 16 |
15
|
3ad2ant2 |
|
| 17 |
16
|
adantr |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|
| 19 |
18
|
3adant3 |
|
| 20 |
14 3 5 2 10
|
mat2pmatbas |
|
| 21 |
19 20
|
jca |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpr |
|
| 24 |
|
eqid |
|
| 25 |
10 24 13 9
|
matsubgcell |
|
| 26 |
17 22 23 23 25
|
syl112anc |
|
| 27 |
|
eqid |
|
| 28 |
6 2 27
|
vr1cl |
|
| 29 |
28
|
adantl |
|
| 30 |
2 10
|
pmatring |
|
| 31 |
24 11
|
ringidcl |
|
| 32 |
30 31
|
syl |
|
| 33 |
29 32
|
jca |
|
| 34 |
33
|
3adant3 |
|
| 35 |
34
|
adantr |
|
| 36 |
|
eqid |
|
| 37 |
10 24 27 12 36
|
matvscacell |
|
| 38 |
17 35 23 23 37
|
syl112anc |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
simpl1 |
|
| 42 |
10 39 40 41 17 23 23 11
|
mat1ov |
|
| 43 |
|
eqid |
|
| 44 |
43
|
iftruei |
|
| 45 |
42 44
|
eqtrdi |
|
| 46 |
45
|
oveq2d |
|
| 47 |
15 28
|
jca |
|
| 48 |
47
|
3ad2ant2 |
|
| 49 |
27 36 39
|
ringridm |
|
| 50 |
48 49
|
syl |
|
| 51 |
50
|
adantr |
|
| 52 |
38 46 51
|
3eqtrd |
|
| 53 |
14 3 5 2 4
|
mat2pmatvalel |
|
| 54 |
53
|
anabsan2 |
|
| 55 |
52 54
|
oveq12d |
|
| 56 |
26 55
|
eqtrd |
|