Metamath Proof Explorer


Theorem chpo1ub

Description: The psi function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion chpo1ub x+ψxx𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 elicopnf 2x2+∞x2x
3 1 2 ax-mp x2+∞x2x
4 chtrpcl x2xθx+
5 3 4 sylbi x2+∞θx+
6 5 rpcnne0d x2+∞θxθx0
7 3 simplbi x2+∞x
8 0red x2+∞0
9 1 a1i x2+∞2
10 2pos 0<2
11 10 a1i x2+∞0<2
12 3 simprbi x2+∞2x
13 8 9 7 11 12 ltletrd x2+∞0<x
14 7 13 elrpd x2+∞x+
15 14 rpcnne0d x2+∞xx0
16 rpre x+x
17 chpcl xψx
18 16 17 syl x+ψx
19 18 recnd x+ψx
20 14 19 syl x2+∞ψx
21 dmdcan θxθx0xx0ψxθxxψxθx=ψxx
22 6 15 20 21 syl3anc x2+∞θxxψxθx=ψxx
23 22 adantl x2+∞θxxψxθx=ψxx
24 23 mpteq2dva x2+∞θxxψxθx=x2+∞ψxx
25 ovexd 2+∞V
26 ovexd x2+∞θxxV
27 ovexd x2+∞ψxθxV
28 eqidd x2+∞θxx=x2+∞θxx
29 eqidd x2+∞ψxθx=x2+∞ψxθx
30 25 26 27 28 29 offval2 x2+∞θxx×fx2+∞ψxθx=x2+∞θxxψxθx
31 14 ssriv 2+∞+
32 resmpt 2+∞+x+ψxx2+∞=x2+∞ψxx
33 31 32 mp1i x+ψxx2+∞=x2+∞ψxx
34 24 30 33 3eqtr4rd x+ψxx2+∞=x2+∞θxx×fx2+∞ψxθx
35 31 a1i 2+∞+
36 chto1ub x+θxx𝑂1
37 36 a1i x+θxx𝑂1
38 35 37 o1res2 x2+∞θxx𝑂1
39 chpchtlim x2+∞ψxθx1
40 rlimo1 x2+∞ψxθx1x2+∞ψxθx𝑂1
41 39 40 ax-mp x2+∞ψxθx𝑂1
42 o1mul x2+∞θxx𝑂1x2+∞ψxθx𝑂1x2+∞θxx×fx2+∞ψxθx𝑂1
43 38 41 42 sylancl x2+∞θxx×fx2+∞ψxθx𝑂1
44 34 43 eqeltrd x+ψxx2+∞𝑂1
45 rerpdivcl ψxx+ψxx
46 18 45 mpancom x+ψxx
47 46 recnd x+ψxx
48 47 adantl x+ψxx
49 48 fmpttd x+ψxx:+
50 rpssre +
51 50 a1i +
52 1 a1i 2
53 49 51 52 o1resb x+ψxx𝑂1x+ψxx2+∞𝑂1
54 44 53 mpbird x+ψxx𝑂1
55 54 mptru x+ψxx𝑂1