Metamath Proof Explorer


Theorem circlemethnat

Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of Nathanson p. 123. This expresses R , the number of different ways a nonnegative integer N can be represented as the sum of at most S integers in the set A as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses circlemethnat.r R = A repr S N
circlemethnat.f F = 𝟙 A vts N x
circlemethnat.n N 0
circlemethnat.a A
circlemethnat.s S
Assertion circlemethnat R = 0 1 F S e i 2 π -N x dx

Proof

Step Hyp Ref Expression
1 circlemethnat.r R = A repr S N
2 circlemethnat.f F = 𝟙 A vts N x
3 circlemethnat.n N 0
4 circlemethnat.a A
5 circlemethnat.s S
6 nnex V
7 indf V A 𝟙 A : 0 1
8 6 4 7 mp2an 𝟙 A : 0 1
9 pr01ssre 0 1
10 ax-resscn
11 9 10 sstri 0 1
12 fss 𝟙 A : 0 1 0 1 𝟙 A :
13 8 11 12 mp2an 𝟙 A :
14 cnex V
15 14 6 elmap 𝟙 A 𝟙 A :
16 13 15 mpbir 𝟙 A
17 16 elexi 𝟙 A V
18 17 fvconst2 a 0 ..^ S 0 ..^ S × 𝟙 A a = 𝟙 A
19 18 adantl c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a = 𝟙 A
20 19 fveq1d c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a = 𝟙 A c a
21 20 prodeq2dv c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a = a 0 ..^ S 𝟙 A c a
22 21 sumeq2dv c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a = c repr S N a 0 ..^ S 𝟙 A c a
23 4 a1i A
24 3 a1i N 0
25 5 a1i S
26 25 nnnn0d S 0
27 23 24 26 hashrepr A repr S N = c repr S N a 0 ..^ S 𝟙 A c a
28 22 27 eqtr4d c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a = A repr S N
29 1 28 eqtr4id R = c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a
30 16 fconst6 0 ..^ S × 𝟙 A : 0 ..^ S
31 30 a1i 0 ..^ S × 𝟙 A : 0 ..^ S
32 24 25 31 circlemeth c repr S N a 0 ..^ S 0 ..^ S × 𝟙 A a c a = 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x e i 2 π -N x dx
33 fzofi 0 ..^ S Fin
34 33 a1i x 0 1 0 ..^ S Fin
35 3 a1i x 0 1 N 0
36 ioossre 0 1
37 36 10 sstri 0 1
38 37 a1i 0 1
39 38 sselda x 0 1 x
40 13 a1i x 0 1 𝟙 A :
41 35 39 40 vtscl x 0 1 𝟙 A vts N x
42 2 41 eqeltrid x 0 1 F
43 fprodconst 0 ..^ S Fin F a 0 ..^ S F = F 0 ..^ S
44 34 42 43 syl2anc x 0 1 a 0 ..^ S F = F 0 ..^ S
45 18 adantl x 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a = 𝟙 A
46 45 oveq1d x 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N = 𝟙 A vts N
47 46 fveq1d x 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x = 𝟙 A vts N x
48 2 47 eqtr4id x 0 1 a 0 ..^ S F = 0 ..^ S × 𝟙 A a vts N x
49 48 prodeq2dv x 0 1 a 0 ..^ S F = a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x
50 26 adantr x 0 1 S 0
51 hashfzo0 S 0 0 ..^ S = S
52 50 51 syl x 0 1 0 ..^ S = S
53 52 oveq2d x 0 1 F 0 ..^ S = F S
54 44 49 53 3eqtr3d x 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x = F S
55 54 oveq1d x 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x e i 2 π -N x = F S e i 2 π -N x
56 55 itgeq2dv 0 1 a 0 ..^ S 0 ..^ S × 𝟙 A a vts N x e i 2 π -N x dx = 0 1 F S e i 2 π -N x dx
57 29 32 56 3eqtrd R = 0 1 F S e i 2 π -N x dx
58 57 mptru R = 0 1 F S e i 2 π -N x dx