| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlemethnat.r |
|
| 2 |
|
circlemethnat.f |
|
| 3 |
|
circlemethnat.n |
|
| 4 |
|
circlemethnat.a |
|
| 5 |
|
circlemethnat.s |
|
| 6 |
|
nnex |
|
| 7 |
|
indf |
|
| 8 |
6 4 7
|
mp2an |
|
| 9 |
|
pr01ssre |
|
| 10 |
|
ax-resscn |
|
| 11 |
9 10
|
sstri |
|
| 12 |
|
fss |
|
| 13 |
8 11 12
|
mp2an |
|
| 14 |
|
cnex |
|
| 15 |
14 6
|
elmap |
|
| 16 |
13 15
|
mpbir |
|
| 17 |
16
|
elexi |
|
| 18 |
17
|
fvconst2 |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
fveq1d |
|
| 21 |
20
|
prodeq2dv |
|
| 22 |
21
|
sumeq2dv |
|
| 23 |
4
|
a1i |
|
| 24 |
3
|
a1i |
|
| 25 |
5
|
a1i |
|
| 26 |
25
|
nnnn0d |
|
| 27 |
23 24 26
|
hashrepr |
|
| 28 |
22 27
|
eqtr4d |
|
| 29 |
1 28
|
eqtr4id |
|
| 30 |
16
|
fconst6 |
|
| 31 |
30
|
a1i |
|
| 32 |
24 25 31
|
circlemeth |
|
| 33 |
|
fzofi |
|
| 34 |
33
|
a1i |
|
| 35 |
3
|
a1i |
|
| 36 |
|
ioossre |
|
| 37 |
36 10
|
sstri |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
sselda |
|
| 40 |
13
|
a1i |
|
| 41 |
35 39 40
|
vtscl |
|
| 42 |
2 41
|
eqeltrid |
|
| 43 |
|
fprodconst |
|
| 44 |
34 42 43
|
syl2anc |
|
| 45 |
18
|
adantl |
|
| 46 |
45
|
oveq1d |
|
| 47 |
46
|
fveq1d |
|
| 48 |
2 47
|
eqtr4id |
|
| 49 |
48
|
prodeq2dv |
|
| 50 |
26
|
adantr |
|
| 51 |
|
hashfzo0 |
|
| 52 |
50 51
|
syl |
|
| 53 |
52
|
oveq2d |
|
| 54 |
44 49 53
|
3eqtr3d |
|
| 55 |
54
|
oveq1d |
|
| 56 |
55
|
itgeq2dv |
|
| 57 |
29 32 56
|
3eqtrd |
|
| 58 |
57
|
mptru |
|