Metamath Proof Explorer


Theorem circlemethnat

Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of Nathanson p. 123. This expresses R , the number of different ways a nonnegative integer N can be represented as the sum of at most S integers in the set A as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses circlemethnat.r R=AreprSN
circlemethnat.f F=𝟙AvtsNx
circlemethnat.n N0
circlemethnat.a A
circlemethnat.s S
Assertion circlemethnat R=01FSei2π- Nxdx

Proof

Step Hyp Ref Expression
1 circlemethnat.r R=AreprSN
2 circlemethnat.f F=𝟙AvtsNx
3 circlemethnat.n N0
4 circlemethnat.a A
5 circlemethnat.s S
6 nnex V
7 indf VA𝟙A:01
8 6 4 7 mp2an 𝟙A:01
9 pr01ssre 01
10 ax-resscn
11 9 10 sstri 01
12 fss 𝟙A:0101𝟙A:
13 8 11 12 mp2an 𝟙A:
14 cnex V
15 14 6 elmap 𝟙A𝟙A:
16 13 15 mpbir 𝟙A
17 16 elexi 𝟙AV
18 17 fvconst2 a0..^S0..^S×𝟙Aa=𝟙A
19 18 adantl creprSNa0..^S0..^S×𝟙Aa=𝟙A
20 19 fveq1d creprSNa0..^S0..^S×𝟙Aaca=𝟙Aca
21 20 prodeq2dv creprSNa0..^S0..^S×𝟙Aaca=a0..^S𝟙Aca
22 21 sumeq2dv creprSNa0..^S0..^S×𝟙Aaca=creprSNa0..^S𝟙Aca
23 4 a1i A
24 3 a1i N0
25 5 a1i S
26 25 nnnn0d S0
27 23 24 26 hashrepr AreprSN=creprSNa0..^S𝟙Aca
28 22 27 eqtr4d creprSNa0..^S0..^S×𝟙Aaca=AreprSN
29 1 28 eqtr4id R=creprSNa0..^S0..^S×𝟙Aaca
30 16 fconst6 0..^S×𝟙A:0..^S
31 30 a1i 0..^S×𝟙A:0..^S
32 24 25 31 circlemeth creprSNa0..^S0..^S×𝟙Aaca=01a0..^S0..^S×𝟙AavtsNxei2π- Nxdx
33 fzofi 0..^SFin
34 33 a1i x010..^SFin
35 3 a1i x01N0
36 ioossre 01
37 36 10 sstri 01
38 37 a1i 01
39 38 sselda x01x
40 13 a1i x01𝟙A:
41 35 39 40 vtscl x01𝟙AvtsNx
42 2 41 eqeltrid x01F
43 fprodconst 0..^SFinFa0..^SF=F0..^S
44 34 42 43 syl2anc x01a0..^SF=F0..^S
45 18 adantl x01a0..^S0..^S×𝟙Aa=𝟙A
46 45 oveq1d x01a0..^S0..^S×𝟙AavtsN=𝟙AvtsN
47 46 fveq1d x01a0..^S0..^S×𝟙AavtsNx=𝟙AvtsNx
48 2 47 eqtr4id x01a0..^SF=0..^S×𝟙AavtsNx
49 48 prodeq2dv x01a0..^SF=a0..^S0..^S×𝟙AavtsNx
50 26 adantr x01S0
51 hashfzo0 S00..^S=S
52 50 51 syl x010..^S=S
53 52 oveq2d x01F0..^S=FS
54 44 49 53 3eqtr3d x01a0..^S0..^S×𝟙AavtsNx=FS
55 54 oveq1d x01a0..^S0..^S×𝟙AavtsNxei2π- Nx=FSei2π- Nx
56 55 itgeq2dv 01a0..^S0..^S×𝟙AavtsNxei2π- Nxdx=01FSei2π- Nxdx
57 29 32 56 3eqtrd R=01FSei2π- Nxdx
58 57 mptru R=01FSei2π- Nxdx