Description: The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of Nathanson p. 123. This expresses R , the number of different ways a nonnegative integer N can be represented as the sum of at most S integers in the set A as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | circlemethnat.r | |
|
circlemethnat.f | |
||
circlemethnat.n | |
||
circlemethnat.a | |
||
circlemethnat.s | |
||
Assertion | circlemethnat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | circlemethnat.r | |
|
2 | circlemethnat.f | |
|
3 | circlemethnat.n | |
|
4 | circlemethnat.a | |
|
5 | circlemethnat.s | |
|
6 | nnex | |
|
7 | indf | |
|
8 | 6 4 7 | mp2an | |
9 | pr01ssre | |
|
10 | ax-resscn | |
|
11 | 9 10 | sstri | |
12 | fss | |
|
13 | 8 11 12 | mp2an | |
14 | cnex | |
|
15 | 14 6 | elmap | |
16 | 13 15 | mpbir | |
17 | 16 | elexi | |
18 | 17 | fvconst2 | |
19 | 18 | adantl | |
20 | 19 | fveq1d | |
21 | 20 | prodeq2dv | |
22 | 21 | sumeq2dv | |
23 | 4 | a1i | |
24 | 3 | a1i | |
25 | 5 | a1i | |
26 | 25 | nnnn0d | |
27 | 23 24 26 | hashrepr | |
28 | 22 27 | eqtr4d | |
29 | 1 28 | eqtr4id | |
30 | 16 | fconst6 | |
31 | 30 | a1i | |
32 | 24 25 31 | circlemeth | |
33 | fzofi | |
|
34 | 33 | a1i | |
35 | 3 | a1i | |
36 | ioossre | |
|
37 | 36 10 | sstri | |
38 | 37 | a1i | |
39 | 38 | sselda | |
40 | 13 | a1i | |
41 | 35 39 40 | vtscl | |
42 | 2 41 | eqeltrid | |
43 | fprodconst | |
|
44 | 34 42 43 | syl2anc | |
45 | 18 | adantl | |
46 | 45 | oveq1d | |
47 | 46 | fveq1d | |
48 | 2 47 | eqtr4id | |
49 | 48 | prodeq2dv | |
50 | 26 | adantr | |
51 | hashfzo0 | |
|
52 | 50 51 | syl | |
53 | 52 | oveq2d | |
54 | 44 49 53 | 3eqtr3d | |
55 | 54 | oveq1d | |
56 | 55 | itgeq2dv | |
57 | 29 32 56 | 3eqtrd | |
58 | 57 | mptru | |