Metamath Proof Explorer


Theorem clsnsg

Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgntr.h J=TopOpenG
Assertion clsnsg GTopGrpSNrmSGrpGclsJSNrmSGrpG

Proof

Step Hyp Ref Expression
1 subgntr.h J=TopOpenG
2 nsgsubg SNrmSGrpGSSubGrpG
3 1 clssubg GTopGrpSSubGrpGclsJSSubGrpG
4 2 3 sylan2 GTopGrpSNrmSGrpGclsJSSubGrpG
5 df-ima yBaseGx+Gy-GxclsJS=ranyBaseGx+Gy-GxclsJS
6 eqid BaseG=BaseG
7 1 6 tgptopon GTopGrpJTopOnBaseG
8 7 ad2antrr GTopGrpSNrmSGrpGxBaseGJTopOnBaseG
9 topontop JTopOnBaseGJTop
10 8 9 syl GTopGrpSNrmSGrpGxBaseGJTop
11 2 ad2antlr GTopGrpSNrmSGrpGxBaseGSSubGrpG
12 6 subgss SSubGrpGSBaseG
13 11 12 syl GTopGrpSNrmSGrpGxBaseGSBaseG
14 toponuni JTopOnBaseGBaseG=J
15 8 14 syl GTopGrpSNrmSGrpGxBaseGBaseG=J
16 13 15 sseqtrd GTopGrpSNrmSGrpGxBaseGSJ
17 eqid J=J
18 17 clsss3 JTopSJclsJSJ
19 10 16 18 syl2anc GTopGrpSNrmSGrpGxBaseGclsJSJ
20 19 15 sseqtrrd GTopGrpSNrmSGrpGxBaseGclsJSBaseG
21 20 resmptd GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxclsJS=yclsJSx+Gy-Gx
22 21 rneqd GTopGrpSNrmSGrpGxBaseGranyBaseGx+Gy-GxclsJS=ranyclsJSx+Gy-Gx
23 5 22 eqtrid GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxclsJS=ranyclsJSx+Gy-Gx
24 eqid +G=+G
25 tgptmd GTopGrpGTopMnd
26 25 ad2antrr GTopGrpSNrmSGrpGxBaseGGTopMnd
27 simpr GTopGrpSNrmSGrpGxBaseGxBaseG
28 8 8 27 cnmptc GTopGrpSNrmSGrpGxBaseGyBaseGxJCnJ
29 8 cnmptid GTopGrpSNrmSGrpGxBaseGyBaseGyJCnJ
30 1 24 26 8 28 29 cnmpt1plusg GTopGrpSNrmSGrpGxBaseGyBaseGx+GyJCnJ
31 eqid -G=-G
32 1 31 tgpsubcn GTopGrp-GJ×tJCnJ
33 32 ad2antrr GTopGrpSNrmSGrpGxBaseG-GJ×tJCnJ
34 8 30 28 33 cnmpt12f GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxJCnJ
35 17 cnclsi yBaseGx+Gy-GxJCnJSJyBaseGx+Gy-GxclsJSclsJyBaseGx+Gy-GxS
36 34 16 35 syl2anc GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxclsJSclsJyBaseGx+Gy-GxS
37 df-ima yBaseGx+Gy-GxS=ranyBaseGx+Gy-GxS
38 13 resmptd GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxS=ySx+Gy-Gx
39 38 rneqd GTopGrpSNrmSGrpGxBaseGranyBaseGx+Gy-GxS=ranySx+Gy-Gx
40 37 39 eqtrid GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxS=ranySx+Gy-Gx
41 6 24 31 nsgconj SNrmSGrpGxBaseGySx+Gy-GxS
42 41 ad4ant234 GTopGrpSNrmSGrpGxBaseGySx+Gy-GxS
43 42 fmpttd GTopGrpSNrmSGrpGxBaseGySx+Gy-Gx:SS
44 43 frnd GTopGrpSNrmSGrpGxBaseGranySx+Gy-GxS
45 40 44 eqsstrd GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxSS
46 17 clsss JTopSJyBaseGx+Gy-GxSSclsJyBaseGx+Gy-GxSclsJS
47 10 16 45 46 syl3anc GTopGrpSNrmSGrpGxBaseGclsJyBaseGx+Gy-GxSclsJS
48 36 47 sstrd GTopGrpSNrmSGrpGxBaseGyBaseGx+Gy-GxclsJSclsJS
49 23 48 eqsstrrd GTopGrpSNrmSGrpGxBaseGranyclsJSx+Gy-GxclsJS
50 ovex x+Gy-GxV
51 eqid yclsJSx+Gy-Gx=yclsJSx+Gy-Gx
52 50 51 fnmpti yclsJSx+Gy-GxFnclsJS
53 df-f yclsJSx+Gy-Gx:clsJSclsJSyclsJSx+Gy-GxFnclsJSranyclsJSx+Gy-GxclsJS
54 52 53 mpbiran yclsJSx+Gy-Gx:clsJSclsJSranyclsJSx+Gy-GxclsJS
55 49 54 sylibr GTopGrpSNrmSGrpGxBaseGyclsJSx+Gy-Gx:clsJSclsJS
56 51 fmpt yclsJSx+Gy-GxclsJSyclsJSx+Gy-Gx:clsJSclsJS
57 55 56 sylibr GTopGrpSNrmSGrpGxBaseGyclsJSx+Gy-GxclsJS
58 57 ralrimiva GTopGrpSNrmSGrpGxBaseGyclsJSx+Gy-GxclsJS
59 6 24 31 isnsg3 clsJSNrmSGrpGclsJSSubGrpGxBaseGyclsJSx+Gy-GxclsJS
60 4 58 59 sylanbrc GTopGrpSNrmSGrpGclsJSNrmSGrpG