Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgntr.h | |
|
Assertion | clsnsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgntr.h | |
|
2 | nsgsubg | |
|
3 | 1 | clssubg | |
4 | 2 3 | sylan2 | |
5 | df-ima | |
|
6 | eqid | |
|
7 | 1 6 | tgptopon | |
8 | 7 | ad2antrr | |
9 | topontop | |
|
10 | 8 9 | syl | |
11 | 2 | ad2antlr | |
12 | 6 | subgss | |
13 | 11 12 | syl | |
14 | toponuni | |
|
15 | 8 14 | syl | |
16 | 13 15 | sseqtrd | |
17 | eqid | |
|
18 | 17 | clsss3 | |
19 | 10 16 18 | syl2anc | |
20 | 19 15 | sseqtrrd | |
21 | 20 | resmptd | |
22 | 21 | rneqd | |
23 | 5 22 | eqtrid | |
24 | eqid | |
|
25 | tgptmd | |
|
26 | 25 | ad2antrr | |
27 | simpr | |
|
28 | 8 8 27 | cnmptc | |
29 | 8 | cnmptid | |
30 | 1 24 26 8 28 29 | cnmpt1plusg | |
31 | eqid | |
|
32 | 1 31 | tgpsubcn | |
33 | 32 | ad2antrr | |
34 | 8 30 28 33 | cnmpt12f | |
35 | 17 | cnclsi | |
36 | 34 16 35 | syl2anc | |
37 | df-ima | |
|
38 | 13 | resmptd | |
39 | 38 | rneqd | |
40 | 37 39 | eqtrid | |
41 | 6 24 31 | nsgconj | |
42 | 41 | ad4ant234 | |
43 | 42 | fmpttd | |
44 | 43 | frnd | |
45 | 40 44 | eqsstrd | |
46 | 17 | clsss | |
47 | 10 16 45 46 | syl3anc | |
48 | 36 47 | sstrd | |
49 | 23 48 | eqsstrrd | |
50 | ovex | |
|
51 | eqid | |
|
52 | 50 51 | fnmpti | |
53 | df-f | |
|
54 | 52 53 | mpbiran | |
55 | 49 54 | sylibr | |
56 | 51 | fmpt | |
57 | 55 56 | sylibr | |
58 | 57 | ralrimiva | |
59 | 6 24 31 | isnsg3 | |
60 | 4 58 59 | sylanbrc | |