Metamath Proof Explorer


Theorem clwwlknonex2

Description: Extending a closed walk W on vertex X by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Hypotheses clwwlknonex2.v V=VtxG
clwwlknonex2.e E=EdgG
Assertion clwwlknonex2 XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩NClWWalksNG

Proof

Step Hyp Ref Expression
1 clwwlknonex2.v V=VtxG
2 clwwlknonex2.e E=EdgG
3 uz3m2nn N3N2
4 3 nnne0d N3N20
5 4 3ad2ant3 XVYVN3N20
6 1 2 clwwlknonel N20WXClWWalksNOnGN2WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=X
7 5 6 syl XVYVN3WXClWWalksNOnGN2WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=X
8 simpr11 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XWWordV
9 8 adantr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEWWordV
10 simpll1 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEXV
11 simpll2 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEYV
12 ccatw2s1cl WWordVXVYVW++⟨“X”⟩++⟨“Y”⟩WordV
13 9 10 11 12 syl3anc XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WordV
14 1 2 clwwlknonex2lem2 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W1W1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
15 simp11 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XWWordV
16 15 ad2antlr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEWWordV
17 ccatw2s1len WWordVW++⟨“X”⟩++⟨“Y”⟩=W+2
18 16 17 syl XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩=W+2
19 18 oveq1d XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩1=W+2-1
20 19 oveq2d XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYE0..^W++⟨“X”⟩++⟨“Y”⟩1=0..^W+2-1
21 simp3 XVYVN3N3
22 simp2 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XW=N2
23 21 22 anim12i XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XN3W=N2
24 23 adantr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEN3W=N2
25 clwwlknonex2lem1 N3W=N20..^W+2-1=0..^W1W1W
26 24 25 syl XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYE0..^W+2-1=0..^W1W1W
27 20 26 eqtrd XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYE0..^W++⟨“X”⟩++⟨“Y”⟩1=0..^W1W1W
28 27 raleqdv XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1Ei0..^W1W1WW++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
29 14 28 mpbird XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1E
30 ccatws1cl WWordVXVW++⟨“X”⟩WordV
31 lswccats1 W++⟨“X”⟩WordVYVlastSW++⟨“X”⟩++⟨“Y”⟩=Y
32 30 31 stoic3 WWordVXVYVlastSW++⟨“X”⟩++⟨“Y”⟩=Y
33 16 10 11 32 syl3anc XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYElastSW++⟨“X”⟩++⟨“Y”⟩=Y
34 3 nngt0d N30<N2
35 breq2 W=N20<W0<N2
36 34 35 imbitrrid W=N2N30<W
37 36 3ad2ant2 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XN30<W
38 37 com12 N3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=X0<W
39 38 3ad2ant3 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=X0<W
40 39 imp XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=X0<W
41 40 adantr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYE0<W
42 ccat2s1fst WWordV0<WW++⟨“X”⟩++⟨“Y”⟩0=W0
43 16 41 42 syl2anc XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩0=W0
44 33 43 preq12d XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0=YW0
45 prcom XY=YX
46 45 eleq1i XYEYXE
47 46 biimpi XYEYXE
48 47 adantl XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEYXE
49 preq2 W0=XYW0=YX
50 49 eleq1d W0=XYW0EYXE
51 50 3ad2ant3 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XYW0EYXE
52 51 ad2antlr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEYW0EYXE
53 48 52 mpbird XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEYW0E
54 44 53 eqeltrd XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0E
55 13 29 54 3jca XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0E
56 17 3ad2ant1 WWordVi0..^W1WiWi+1ElastSWW0EW++⟨“X”⟩++⟨“Y”⟩=W+2
57 56 3ad2ant1 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XW++⟨“X”⟩++⟨“Y”⟩=W+2
58 57 ad2antlr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩=W+2
59 oveq1 W=N2W+2=N-2+2
60 eluzelcn N3N
61 2cn 2
62 npcan N2N-2+2=N
63 60 61 62 sylancl N3N-2+2=N
64 59 63 sylan9eq W=N2N3W+2=N
65 64 ex W=N2N3W+2=N
66 65 3ad2ant2 WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XN3W+2=N
67 66 com12 N3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XW+2=N
68 67 3ad2ant3 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XW+2=N
69 68 imp XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XW+2=N
70 69 adantr XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW+2=N
71 58 70 eqtrd XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩=N
72 55 71 jca XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
73 72 exp31 XVYVN3WWordVi0..^W1WiWi+1ElastSWW0EW=N2W0=XXYEW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
74 7 73 sylbid XVYVN3WXClWWalksNOnGN2XYEW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
75 74 com23 XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
76 75 3imp XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
77 eluzge3nn N3N
78 1 2 isclwwlknx NW++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
79 77 78 syl N3W++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
80 79 3ad2ant3 XVYVN3W++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
81 80 3ad2ant1 XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩NClWWalksNGW++⟨“X”⟩++⟨“Y”⟩WordVi0..^W++⟨“X”⟩++⟨“Y”⟩1W++⟨“X”⟩++⟨“Y”⟩iW++⟨“X”⟩++⟨“Y”⟩i+1ElastSW++⟨“X”⟩++⟨“Y”⟩W++⟨“X”⟩++⟨“Y”⟩0EW++⟨“X”⟩++⟨“Y”⟩=N
82 76 81 mpbird XVYVN3XYEWXClWWalksNOnGN2W++⟨“X”⟩++⟨“Y”⟩NClWWalksNG