Metamath Proof Explorer


Theorem clwwlkvbij

Description: There is a bijection between the set of closed walks of a fixed length N on a fixed vertex X represented by walks (as word) and the set of closed walks (as words) of the fixed length N on the fixed vertex X . The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 7-Jul-2022) (Proof shortened by AV, 2-Nov-2022)

Ref Expression
Assertion clwwlkvbij XVNff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 ovex NWWalksNGV
2 1 mptrabex wxNWWalksNG|lastSx=x0wprefixNV
3 2 resex wxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=XV
4 eqid wxNWWalksNG|lastSx=x0wprefixN=wxNWWalksNG|lastSx=x0wprefixN
5 eqid xNWWalksNG|lastSx=x0=xNWWalksNG|lastSx=x0
6 5 4 clwwlkf1o NwxNWWalksNG|lastSx=x0wprefixN:xNWWalksNG|lastSx=x01-1 ontoNClWWalksNG
7 fveq1 y=wprefixNy0=wprefixN0
8 7 eqeq1d y=wprefixNy0=XwprefixN0=X
9 8 3ad2ant3 NwxNWWalksNG|lastSx=x0y=wprefixNy0=XwprefixN0=X
10 fveq2 x=wlastSx=lastSw
11 fveq1 x=wx0=w0
12 10 11 eqeq12d x=wlastSx=x0lastSw=w0
13 12 elrab wxNWWalksNG|lastSx=x0wNWWalksNGlastSw=w0
14 eqid VtxG=VtxG
15 eqid EdgG=EdgG
16 14 15 wwlknp wNWWalksNGwWordVtxGw=N+1i0..^Nwiwi+1EdgG
17 simpll wWordVtxGw=N+1NwWordVtxG
18 nnz NN
19 uzid NNN
20 peano2uz NNN+1N
21 18 19 20 3syl NN+1N
22 elfz1end NN1N
23 22 biimpi NN1N
24 fzss2 N+1N1N1N+1
25 24 sselda N+1NN1NN1N+1
26 21 23 25 syl2anc NN1N+1
27 26 adantl wWordVtxGw=N+1NN1N+1
28 oveq2 w=N+11w=1N+1
29 28 eleq2d w=N+1N1wN1N+1
30 29 adantl wWordVtxGw=N+1N1wN1N+1
31 30 adantr wWordVtxGw=N+1NN1wN1N+1
32 27 31 mpbird wWordVtxGw=N+1NN1w
33 17 32 jca wWordVtxGw=N+1NwWordVtxGN1w
34 33 ex wWordVtxGw=N+1NwWordVtxGN1w
35 34 3adant3 wWordVtxGw=N+1i0..^Nwiwi+1EdgGNwWordVtxGN1w
36 16 35 syl wNWWalksNGNwWordVtxGN1w
37 36 adantr wNWWalksNGlastSw=w0NwWordVtxGN1w
38 13 37 sylbi wxNWWalksNG|lastSx=x0NwWordVtxGN1w
39 38 impcom NwxNWWalksNG|lastSx=x0wWordVtxGN1w
40 pfxfv0 wWordVtxGN1wwprefixN0=w0
41 39 40 syl NwxNWWalksNG|lastSx=x0wprefixN0=w0
42 41 eqeq1d NwxNWWalksNG|lastSx=x0wprefixN0=Xw0=X
43 42 3adant3 NwxNWWalksNG|lastSx=x0y=wprefixNwprefixN0=Xw0=X
44 9 43 bitrd NwxNWWalksNG|lastSx=x0y=wprefixNy0=Xw0=X
45 4 6 44 f1oresrab NwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoyNClWWalksNG|y0=X
46 45 adantl XVNwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoyNClWWalksNG|y0=X
47 clwwlknon XClWWalksNOnGN=yNClWWalksNG|y0=X
48 47 a1i XVNXClWWalksNOnGN=yNClWWalksNG|y0=X
49 48 f1oeq3d XVNwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGNwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoyNClWWalksNG|y0=X
50 46 49 mpbird XVNwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
51 f1oeq1 f=wxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=Xf:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGNwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
52 51 spcegv wxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=XVwxNWWalksNG|lastSx=x0wprefixNwxNWWalksNG|lastSx=x0|w0=X:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGNff:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
53 3 50 52 mpsyl XVNff:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
54 df-rab wNWWalksNG|lastSw=w0w0=X=w|wNWWalksNGlastSw=w0w0=X
55 anass wNWWalksNGlastSw=w0w0=XwNWWalksNGlastSw=w0w0=X
56 55 bicomi wNWWalksNGlastSw=w0w0=XwNWWalksNGlastSw=w0w0=X
57 56 abbii w|wNWWalksNGlastSw=w0w0=X=w|wNWWalksNGlastSw=w0w0=X
58 13 bicomi wNWWalksNGlastSw=w0wxNWWalksNG|lastSx=x0
59 58 anbi1i wNWWalksNGlastSw=w0w0=XwxNWWalksNG|lastSx=x0w0=X
60 59 abbii w|wNWWalksNGlastSw=w0w0=X=w|wxNWWalksNG|lastSx=x0w0=X
61 df-rab wxNWWalksNG|lastSx=x0|w0=X=w|wxNWWalksNG|lastSx=x0w0=X
62 60 61 eqtr4i w|wNWWalksNGlastSw=w0w0=X=wxNWWalksNG|lastSx=x0|w0=X
63 54 57 62 3eqtri wNWWalksNG|lastSw=w0w0=X=wxNWWalksNG|lastSx=x0|w0=X
64 f1oeq2 wNWWalksNG|lastSw=w0w0=X=wxNWWalksNG|lastSx=x0|w0=Xf:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGNf:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
65 63 64 mp1i XVNf:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGNf:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
66 65 exbidv XVNff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGNff:wxNWWalksNG|lastSx=x0|w0=X1-1 ontoXClWWalksNOnGN
67 53 66 mpbird XVNff:wNWWalksNG|lastSw=w0w0=X1-1 ontoXClWWalksNOnGN