| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmetmet |  | 
						
							| 2 |  | metxmet |  | 
						
							| 3 |  | xmetpsmet |  | 
						
							| 4 | 1 2 3 | 3syl |  | 
						
							| 5 | 4 | anim2i |  | 
						
							| 6 |  | metuust |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | tususp |  | 
						
							| 9 | 5 6 8 | 3syl |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 | 10 | simprd |  | 
						
							| 12 | 1 2 | syl |  | 
						
							| 13 | 12 | ad3antlr |  | 
						
							| 14 | 7 | tusbas |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 15 | eleq2d |  | 
						
							| 17 | 5 6 16 | 3syl |  | 
						
							| 18 | 17 | biimpar |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 7 | tususs |  | 
						
							| 21 | 20 | fveq2d |  | 
						
							| 22 | 5 6 21 | 3syl |  | 
						
							| 23 | 22 | eleq2d |  | 
						
							| 24 | 23 | biimpar |  | 
						
							| 25 | 24 | adantlr |  | 
						
							| 26 |  | cfilucfil2 |  | 
						
							| 27 | 5 26 | syl |  | 
						
							| 28 | 27 | simplbda |  | 
						
							| 29 | 10 25 28 | syl2anc |  | 
						
							| 30 |  | iscfil |  | 
						
							| 31 | 30 | biimpar |  | 
						
							| 32 | 13 19 29 31 | syl12anc |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 | cmetcvg |  | 
						
							| 35 | 11 32 34 | syl2anc |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 7 36 | tustopn |  | 
						
							| 38 | 5 6 37 | 3syl |  | 
						
							| 39 | 12 | anim2i |  | 
						
							| 40 |  | xmetutop |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 38 41 | eqtr3d |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 43 | neeq1d |  | 
						
							| 45 | 44 | biimpar |  | 
						
							| 46 | 10 35 45 | syl2anc |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 | 47 | ralrimiva |  | 
						
							| 49 |  | iscusp |  | 
						
							| 50 | 9 48 49 | sylanbrc |  |