Description: The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | cmetcusp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmet | |
|
2 | metxmet | |
|
3 | xmetpsmet | |
|
4 | 1 2 3 | 3syl | |
5 | 4 | anim2i | |
6 | metuust | |
|
7 | eqid | |
|
8 | 7 | tususp | |
9 | 5 6 8 | 3syl | |
10 | simpll | |
|
11 | 10 | simprd | |
12 | 1 2 | syl | |
13 | 12 | ad3antlr | |
14 | 7 | tusbas | |
15 | 14 | fveq2d | |
16 | 15 | eleq2d | |
17 | 5 6 16 | 3syl | |
18 | 17 | biimpar | |
19 | 18 | adantr | |
20 | 7 | tususs | |
21 | 20 | fveq2d | |
22 | 5 6 21 | 3syl | |
23 | 22 | eleq2d | |
24 | 23 | biimpar | |
25 | 24 | adantlr | |
26 | cfilucfil2 | |
|
27 | 5 26 | syl | |
28 | 27 | simplbda | |
29 | 10 25 28 | syl2anc | |
30 | iscfil | |
|
31 | 30 | biimpar | |
32 | 13 19 29 31 | syl12anc | |
33 | eqid | |
|
34 | 33 | cmetcvg | |
35 | 11 32 34 | syl2anc | |
36 | eqid | |
|
37 | 7 36 | tustopn | |
38 | 5 6 37 | 3syl | |
39 | 12 | anim2i | |
40 | xmetutop | |
|
41 | 39 40 | syl | |
42 | 38 41 | eqtr3d | |
43 | 42 | oveq1d | |
44 | 43 | neeq1d | |
45 | 44 | biimpar | |
46 | 10 35 45 | syl2anc | |
47 | 46 | ex | |
48 | 47 | ralrimiva | |
49 | iscusp | |
|
50 | 9 48 49 | sylanbrc | |