| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmetmet |
|
| 2 |
|
metxmet |
|
| 3 |
|
xmetpsmet |
|
| 4 |
1 2 3
|
3syl |
|
| 5 |
4
|
anim2i |
|
| 6 |
|
metuust |
|
| 7 |
|
eqid |
|
| 8 |
7
|
tususp |
|
| 9 |
5 6 8
|
3syl |
|
| 10 |
|
simpll |
|
| 11 |
10
|
simprd |
|
| 12 |
1 2
|
syl |
|
| 13 |
12
|
ad3antlr |
|
| 14 |
7
|
tusbas |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15
|
eleq2d |
|
| 17 |
5 6 16
|
3syl |
|
| 18 |
17
|
biimpar |
|
| 19 |
18
|
adantr |
|
| 20 |
7
|
tususs |
|
| 21 |
20
|
fveq2d |
|
| 22 |
5 6 21
|
3syl |
|
| 23 |
22
|
eleq2d |
|
| 24 |
23
|
biimpar |
|
| 25 |
24
|
adantlr |
|
| 26 |
|
cfilucfil2 |
|
| 27 |
5 26
|
syl |
|
| 28 |
27
|
simplbda |
|
| 29 |
10 25 28
|
syl2anc |
|
| 30 |
|
iscfil |
|
| 31 |
30
|
biimpar |
|
| 32 |
13 19 29 31
|
syl12anc |
|
| 33 |
|
eqid |
|
| 34 |
33
|
cmetcvg |
|
| 35 |
11 32 34
|
syl2anc |
|
| 36 |
|
eqid |
|
| 37 |
7 36
|
tustopn |
|
| 38 |
5 6 37
|
3syl |
|
| 39 |
12
|
anim2i |
|
| 40 |
|
xmetutop |
|
| 41 |
39 40
|
syl |
|
| 42 |
38 41
|
eqtr3d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
neeq1d |
|
| 45 |
44
|
biimpar |
|
| 46 |
10 35 45
|
syl2anc |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
iscusp |
|
| 50 |
9 48 49
|
sylanbrc |
|