Metamath Proof Explorer


Theorem cmppcmp

Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion cmppcmp JCompJParacomp

Proof

Step Hyp Ref Expression
1 cmptop JCompJTop
2 cmpcref Comp=CovHasRefFin
3 2 eleq2i JCompJCovHasRefFin
4 eqid J=J
5 4 iscref JCovHasRefFinJTopy𝒫JJ=yz𝒫JFinzRefy
6 3 5 bitri JCompJTopy𝒫JJ=yz𝒫JFinzRefy
7 6 simprbi JCompy𝒫JJ=yz𝒫JFinzRefy
8 simprl JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JFin
9 elin z𝒫JFinz𝒫JzFin
10 8 9 sylib JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JzFin
11 10 simpld JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫J
12 1 ad3antrrr JCompy𝒫JJ=yz𝒫JFinzRefyJTop
13 10 simprd JCompy𝒫JJ=yz𝒫JFinzRefyzFin
14 simplr JCompy𝒫JJ=yz𝒫JFinzRefyJ=y
15 simprr JCompy𝒫JJ=yz𝒫JFinzRefyzRefy
16 eqid z=z
17 eqid y=y
18 16 17 refbas zRefyy=z
19 15 18 syl JCompy𝒫JJ=yz𝒫JFinzRefyy=z
20 14 19 eqtrd JCompy𝒫JJ=yz𝒫JFinzRefyJ=z
21 4 16 finlocfin JTopzFinJ=zzLocFinJ
22 12 13 20 21 syl3anc JCompy𝒫JJ=yz𝒫JFinzRefyzLocFinJ
23 11 22 elind JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JLocFinJ
24 23 15 jca JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JLocFinJzRefy
25 24 ex JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JLocFinJzRefy
26 25 reximdv2 JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JLocFinJzRefy
27 26 ex JCompy𝒫JJ=yz𝒫JFinzRefyz𝒫JLocFinJzRefy
28 27 a2d JCompy𝒫JJ=yz𝒫JFinzRefyJ=yz𝒫JLocFinJzRefy
29 28 ralimdva JCompy𝒫JJ=yz𝒫JFinzRefyy𝒫JJ=yz𝒫JLocFinJzRefy
30 7 29 mpd JCompy𝒫JJ=yz𝒫JLocFinJzRefy
31 ispcmp JParacompJCovHasRefLocFinJ
32 4 iscref JCovHasRefLocFinJJTopy𝒫JJ=yz𝒫JLocFinJzRefy
33 31 32 bitri JParacompJTopy𝒫JJ=yz𝒫JLocFinJzRefy
34 1 30 33 sylanbrc JCompJParacomp