Description: Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cmppcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmptop | |
|
2 | cmpcref | |
|
3 | 2 | eleq2i | |
4 | eqid | |
|
5 | 4 | iscref | |
6 | 3 5 | bitri | |
7 | 6 | simprbi | |
8 | simprl | |
|
9 | elin | |
|
10 | 8 9 | sylib | |
11 | 10 | simpld | |
12 | 1 | ad3antrrr | |
13 | 10 | simprd | |
14 | simplr | |
|
15 | simprr | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 16 17 | refbas | |
19 | 15 18 | syl | |
20 | 14 19 | eqtrd | |
21 | 4 16 | finlocfin | |
22 | 12 13 20 21 | syl3anc | |
23 | 11 22 | elind | |
24 | 23 15 | jca | |
25 | 24 | ex | |
26 | 25 | reximdv2 | |
27 | 26 | ex | |
28 | 27 | a2d | |
29 | 28 | ralimdva | |
30 | 7 29 | mpd | |
31 | ispcmp | |
|
32 | 4 | iscref | |
33 | 31 32 | bitri | |
34 | 1 30 33 | sylanbrc | |