Metamath Proof Explorer


Theorem cncfco

Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses cncfco.4 φF:AcnB
cncfco.5 φG:BcnC
Assertion cncfco φGF:AcnC

Proof

Step Hyp Ref Expression
1 cncfco.4 φF:AcnB
2 cncfco.5 φG:BcnC
3 cncff G:BcnCG:BC
4 2 3 syl φG:BC
5 cncff F:AcnBF:AB
6 1 5 syl φF:AB
7 fco G:BCF:ABGF:AC
8 4 6 7 syl2anc φGF:AC
9 2 adantr φxAy+G:BcnC
10 6 adantr φxAy+F:AB
11 simprl φxAy+xA
12 10 11 ffvelcdmd φxAy+FxB
13 simprr φxAy+y+
14 cncfi G:BcnCFxBy+u+vBvFx<uGvGFx<y
15 9 12 13 14 syl3anc φxAy+u+vBvFx<uGvGFx<y
16 1 ad2antrr φxAy+u+F:AcnB
17 simplrl φxAy+u+xA
18 simpr φxAy+u+u+
19 cncfi F:AcnBxAu+z+wAwx<zFwFx<u
20 16 17 18 19 syl3anc φxAy+u+z+wAwx<zFwFx<u
21 6 ad3antrrr φxAy+u+z+wAF:AB
22 simprr φxAy+u+z+wAwA
23 21 22 ffvelcdmd φxAy+u+z+wAFwB
24 fvoveq1 v=FwvFx=FwFx
25 24 breq1d v=FwvFx<uFwFx<u
26 25 imbrov2fvoveq v=FwvFx<uGvGFx<yFwFx<uGFwGFx<y
27 26 rspcv FwBvBvFx<uGvGFx<yFwFx<uGFwGFx<y
28 23 27 syl φxAy+u+z+wAvBvFx<uGvGFx<yFwFx<uGFwGFx<y
29 fvco3 F:ABwAGFw=GFw
30 21 22 29 syl2anc φxAy+u+z+wAGFw=GFw
31 17 adantr φxAy+u+z+wAxA
32 fvco3 F:ABxAGFx=GFx
33 21 31 32 syl2anc φxAy+u+z+wAGFx=GFx
34 30 33 oveq12d φxAy+u+z+wAGFwGFx=GFwGFx
35 34 fveq2d φxAy+u+z+wAGFwGFx=GFwGFx
36 35 breq1d φxAy+u+z+wAGFwGFx<yGFwGFx<y
37 36 imbi2d φxAy+u+z+wAFwFx<uGFwGFx<yFwFx<uGFwGFx<y
38 28 37 sylibrd φxAy+u+z+wAvBvFx<uGvGFx<yFwFx<uGFwGFx<y
39 38 imp φxAy+u+z+wAvBvFx<uGvGFx<yFwFx<uGFwGFx<y
40 39 an32s φxAy+u+vBvFx<uGvGFx<yz+wAFwFx<uGFwGFx<y
41 40 imim2d φxAy+u+vBvFx<uGvGFx<yz+wAwx<zFwFx<uwx<zGFwGFx<y
42 41 anassrs φxAy+u+vBvFx<uGvGFx<yz+wAwx<zFwFx<uwx<zGFwGFx<y
43 42 ralimdva φxAy+u+vBvFx<uGvGFx<yz+wAwx<zFwFx<uwAwx<zGFwGFx<y
44 43 reximdva φxAy+u+vBvFx<uGvGFx<yz+wAwx<zFwFx<uz+wAwx<zGFwGFx<y
45 44 ex φxAy+u+vBvFx<uGvGFx<yz+wAwx<zFwFx<uz+wAwx<zGFwGFx<y
46 20 45 mpid φxAy+u+vBvFx<uGvGFx<yz+wAwx<zGFwGFx<y
47 46 rexlimdva φxAy+u+vBvFx<uGvGFx<yz+wAwx<zGFwGFx<y
48 15 47 mpd φxAy+z+wAwx<zGFwGFx<y
49 48 ralrimivva φxAy+z+wAwx<zGFwGFx<y
50 cncfrss F:AcnBA
51 1 50 syl φA
52 cncfrss2 G:BcnCC
53 2 52 syl φC
54 elcncf2 ACGF:AcnCGF:ACxAy+z+wAwx<zGFwGFx<y
55 51 53 54 syl2anc φGF:AcnCGF:ACxAy+z+wAwx<zGFwGFx<y
56 8 49 55 mpbir2and φGF:AcnC