Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cncfco.4 | |
|
cncfco.5 | |
||
Assertion | cncfco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfco.4 | |
|
2 | cncfco.5 | |
|
3 | cncff | |
|
4 | 2 3 | syl | |
5 | cncff | |
|
6 | 1 5 | syl | |
7 | fco | |
|
8 | 4 6 7 | syl2anc | |
9 | 2 | adantr | |
10 | 6 | adantr | |
11 | simprl | |
|
12 | 10 11 | ffvelcdmd | |
13 | simprr | |
|
14 | cncfi | |
|
15 | 9 12 13 14 | syl3anc | |
16 | 1 | ad2antrr | |
17 | simplrl | |
|
18 | simpr | |
|
19 | cncfi | |
|
20 | 16 17 18 19 | syl3anc | |
21 | 6 | ad3antrrr | |
22 | simprr | |
|
23 | 21 22 | ffvelcdmd | |
24 | fvoveq1 | |
|
25 | 24 | breq1d | |
26 | 25 | imbrov2fvoveq | |
27 | 26 | rspcv | |
28 | 23 27 | syl | |
29 | fvco3 | |
|
30 | 21 22 29 | syl2anc | |
31 | 17 | adantr | |
32 | fvco3 | |
|
33 | 21 31 32 | syl2anc | |
34 | 30 33 | oveq12d | |
35 | 34 | fveq2d | |
36 | 35 | breq1d | |
37 | 36 | imbi2d | |
38 | 28 37 | sylibrd | |
39 | 38 | imp | |
40 | 39 | an32s | |
41 | 40 | imim2d | |
42 | 41 | anassrs | |
43 | 42 | ralimdva | |
44 | 43 | reximdva | |
45 | 44 | ex | |
46 | 20 45 | mpid | |
47 | 46 | rexlimdva | |
48 | 15 47 | mpd | |
49 | 48 | ralrimivva | |
50 | cncfrss | |
|
51 | 1 50 | syl | |
52 | cncfrss2 | |
|
53 | 2 52 | syl | |
54 | elcncf2 | |
|
55 | 51 53 54 | syl2anc | |
56 | 8 49 55 | mpbir2and | |