Metamath Proof Explorer


Theorem cnextucn

Description: Extension by continuity. Proposition 11 of BourbakiTop1 p. II.20. Given a topology J on X , a subset A dense in X , this states a condition for F from A to a space Y Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017)

Ref Expression
Hypotheses cnextucn.x X=BaseV
cnextucn.y Y=BaseW
cnextucn.j J=TopOpenV
cnextucn.k K=TopOpenW
cnextucn.u U=UnifStW
cnextucn.v φVTopSp
cnextucn.t φWTopSp
cnextucn.w φWCUnifSp
cnextucn.h φKHaus
cnextucn.a φAX
cnextucn.f φF:AY
cnextucn.c φclsJA=X
cnextucn.l φxXYFilMapFneiJx𝑡ACauFilUU
Assertion cnextucn φJCnExtKFJCnK

Proof

Step Hyp Ref Expression
1 cnextucn.x X=BaseV
2 cnextucn.y Y=BaseW
3 cnextucn.j J=TopOpenV
4 cnextucn.k K=TopOpenW
5 cnextucn.u U=UnifStW
6 cnextucn.v φVTopSp
7 cnextucn.t φWTopSp
8 cnextucn.w φWCUnifSp
9 cnextucn.h φKHaus
10 cnextucn.a φAX
11 cnextucn.f φF:AY
12 cnextucn.c φclsJA=X
13 cnextucn.l φxXYFilMapFneiJx𝑡ACauFilUU
14 eqid J=J
15 eqid K=K
16 3 tpstop VTopSpJTop
17 6 16 syl φJTop
18 2 4 tpsuni WTopSpY=K
19 7 18 syl φY=K
20 19 feq3d φF:AYF:AK
21 11 20 mpbid φF:AK
22 1 3 tpsuni VTopSpX=J
23 6 22 syl φX=J
24 10 23 sseqtrd φAJ
25 12 23 eqtrd φclsJA=J
26 2 4 istps WTopSpKTopOnY
27 7 26 sylib φKTopOnY
28 27 adantr φxJKTopOnY
29 23 eleq2d φxXxJ
30 29 biimpar φxJxX
31 12 adantr φxJclsJA=X
32 30 31 eleqtrrd φxJxclsJA
33 toptopon2 JTopJTopOnJ
34 17 33 sylib φJTopOnJ
35 fveq2 X=JTopOnX=TopOnJ
36 35 eleq2d X=JJTopOnXJTopOnJ
37 23 36 syl φJTopOnXJTopOnJ
38 34 37 mpbird φJTopOnX
39 38 adantr φxJJTopOnX
40 10 adantr φxJAX
41 trnei JTopOnXAXxXxclsJAneiJx𝑡AFilA
42 39 40 30 41 syl3anc φxJxclsJAneiJx𝑡AFilA
43 32 42 mpbid φxJneiJx𝑡AFilA
44 11 adantr φxJF:AY
45 flfval KTopOnYneiJx𝑡AFilAF:AYKfLimfneiJx𝑡AF=KfLimYFilMapFneiJx𝑡A
46 28 43 44 45 syl3anc φxJKfLimfneiJx𝑡AF=KfLimYFilMapFneiJx𝑡A
47 8 adantr φxJWCUnifSp
48 30 13 syldan φxJYFilMapFneiJx𝑡ACauFilUU
49 5 fveq2i CauFilUU=CauFilUUnifStW
50 48 49 eleqtrdi φxJYFilMapFneiJx𝑡ACauFilUUnifStW
51 2 fvexi YV
52 filfbas neiJx𝑡AFilAneiJx𝑡AfBasA
53 43 52 syl φxJneiJx𝑡AfBasA
54 fmfil YVneiJx𝑡AfBasAF:AYYFilMapFneiJx𝑡AFilY
55 51 53 44 54 mp3an2i φxJYFilMapFneiJx𝑡AFilY
56 2 4 cuspcvg WCUnifSpYFilMapFneiJx𝑡ACauFilUUnifStWYFilMapFneiJx𝑡AFilYKfLimYFilMapFneiJx𝑡A
57 47 50 55 56 syl3anc φxJKfLimYFilMapFneiJx𝑡A
58 46 57 eqnetrd φxJKfLimfneiJx𝑡AF
59 cuspusp WCUnifSpWUnifSp
60 8 59 syl φWUnifSp
61 4 uspreg WUnifSpKHausKReg
62 60 9 61 syl2anc φKReg
63 14 15 17 9 21 24 25 58 62 cnextcn φJCnExtKFJCnK