Description: Extension by continuity. Proposition 11 of BourbakiTop1 p. II.20. Given a topology J on X , a subset A dense in X , this states a condition for F from A to a space Y Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnextucn.x | |
|
cnextucn.y | |
||
cnextucn.j | |
||
cnextucn.k | |
||
cnextucn.u | |
||
cnextucn.v | |
||
cnextucn.t | |
||
cnextucn.w | |
||
cnextucn.h | |
||
cnextucn.a | |
||
cnextucn.f | |
||
cnextucn.c | |
||
cnextucn.l | |
||
Assertion | cnextucn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextucn.x | |
|
2 | cnextucn.y | |
|
3 | cnextucn.j | |
|
4 | cnextucn.k | |
|
5 | cnextucn.u | |
|
6 | cnextucn.v | |
|
7 | cnextucn.t | |
|
8 | cnextucn.w | |
|
9 | cnextucn.h | |
|
10 | cnextucn.a | |
|
11 | cnextucn.f | |
|
12 | cnextucn.c | |
|
13 | cnextucn.l | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 3 | tpstop | |
17 | 6 16 | syl | |
18 | 2 4 | tpsuni | |
19 | 7 18 | syl | |
20 | 19 | feq3d | |
21 | 11 20 | mpbid | |
22 | 1 3 | tpsuni | |
23 | 6 22 | syl | |
24 | 10 23 | sseqtrd | |
25 | 12 23 | eqtrd | |
26 | 2 4 | istps | |
27 | 7 26 | sylib | |
28 | 27 | adantr | |
29 | 23 | eleq2d | |
30 | 29 | biimpar | |
31 | 12 | adantr | |
32 | 30 31 | eleqtrrd | |
33 | toptopon2 | |
|
34 | 17 33 | sylib | |
35 | fveq2 | |
|
36 | 35 | eleq2d | |
37 | 23 36 | syl | |
38 | 34 37 | mpbird | |
39 | 38 | adantr | |
40 | 10 | adantr | |
41 | trnei | |
|
42 | 39 40 30 41 | syl3anc | |
43 | 32 42 | mpbid | |
44 | 11 | adantr | |
45 | flfval | |
|
46 | 28 43 44 45 | syl3anc | |
47 | 8 | adantr | |
48 | 30 13 | syldan | |
49 | 5 | fveq2i | |
50 | 48 49 | eleqtrdi | |
51 | 2 | fvexi | |
52 | filfbas | |
|
53 | 43 52 | syl | |
54 | fmfil | |
|
55 | 51 53 44 54 | mp3an2i | |
56 | 2 4 | cuspcvg | |
57 | 47 50 55 56 | syl3anc | |
58 | 46 57 | eqnetrd | |
59 | cuspusp | |
|
60 | 8 59 | syl | |
61 | 4 | uspreg | |
62 | 60 9 61 | syl2anc | |
63 | 14 15 17 9 21 24 25 58 62 | cnextcn | |