Metamath Proof Explorer


Theorem cnfldfun

Description: The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Assertion cnfldfun Fun fld

Proof

Step Hyp Ref Expression
1 basendxnplusgndx Base ndx + ndx
2 basendxnmulrndx Base ndx ndx
3 plusgndxnmulrndx + ndx ndx
4 fvex Base ndx V
5 fvex + ndx V
6 fvex ndx V
7 cnex V
8 addex + V
9 mulex × V
10 4 5 6 7 8 9 funtp Base ndx + ndx Base ndx ndx + ndx ndx Fun Base ndx + ndx + ndx ×
11 1 2 3 10 mp3an Fun Base ndx + ndx + ndx ×
12 fvex * ndx V
13 cjf * :
14 fex * : V * V
15 13 7 14 mp2an * V
16 12 15 funsn Fun * ndx *
17 11 16 pm3.2i Fun Base ndx + ndx + ndx × Fun * ndx *
18 7 8 9 dmtpop dom Base ndx + ndx + ndx × = Base ndx + ndx ndx
19 15 dmsnop dom * ndx * = * ndx
20 18 19 ineq12i dom Base ndx + ndx + ndx × dom * ndx * = Base ndx + ndx ndx * ndx
21 starvndxnbasendx * ndx Base ndx
22 21 necomi Base ndx * ndx
23 starvndxnplusgndx * ndx + ndx
24 23 necomi + ndx * ndx
25 starvndxnmulrndx * ndx ndx
26 25 necomi ndx * ndx
27 disjtpsn Base ndx * ndx + ndx * ndx ndx * ndx Base ndx + ndx ndx * ndx =
28 22 24 26 27 mp3an Base ndx + ndx ndx * ndx =
29 20 28 eqtri dom Base ndx + ndx + ndx × dom * ndx * =
30 funun Fun Base ndx + ndx + ndx × Fun * ndx * dom Base ndx + ndx + ndx × dom * ndx * = Fun Base ndx + ndx + ndx × * ndx *
31 17 29 30 mp2an Fun Base ndx + ndx + ndx × * ndx *
32 slotsdifplendx * ndx ndx TopSet ndx ndx
33 32 simpri TopSet ndx ndx
34 dsndxntsetndx dist ndx TopSet ndx
35 34 necomi TopSet ndx dist ndx
36 slotsdifdsndx * ndx dist ndx ndx dist ndx
37 36 simpri ndx dist ndx
38 fvex TopSet ndx V
39 fvex ndx V
40 fvex dist ndx V
41 fvex MetOpen abs V
42 letsr TosetRel
43 42 elexi V
44 absf abs :
45 fex abs : V abs V
46 44 7 45 mp2an abs V
47 subf : ×
48 7 7 xpex × V
49 fex : × × V V
50 47 48 49 mp2an V
51 46 50 coex abs V
52 38 39 40 41 43 51 funtp TopSet ndx ndx TopSet ndx dist ndx ndx dist ndx Fun TopSet ndx MetOpen abs ndx dist ndx abs
53 33 35 37 52 mp3an Fun TopSet ndx MetOpen abs ndx dist ndx abs
54 fvex UnifSet ndx V
55 fvex metUnif abs V
56 54 55 funsn Fun UnifSet ndx metUnif abs
57 53 56 pm3.2i Fun TopSet ndx MetOpen abs ndx dist ndx abs Fun UnifSet ndx metUnif abs
58 41 43 51 dmtpop dom TopSet ndx MetOpen abs ndx dist ndx abs = TopSet ndx ndx dist ndx
59 55 dmsnop dom UnifSet ndx metUnif abs = UnifSet ndx
60 58 59 ineq12i dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = TopSet ndx ndx dist ndx UnifSet ndx
61 slotsdifunifndx + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx
62 unifndxntsetndx UnifSet ndx TopSet ndx
63 62 necomi TopSet ndx UnifSet ndx
64 63 a1i + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx TopSet ndx UnifSet ndx
65 64 anim1i + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx
66 3anass TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx
67 65 66 sylibr + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx
68 61 67 ax-mp TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx
69 disjtpsn TopSet ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx TopSet ndx ndx dist ndx UnifSet ndx =
70 68 69 ax-mp TopSet ndx ndx dist ndx UnifSet ndx =
71 60 70 eqtri dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
72 funun Fun TopSet ndx MetOpen abs ndx dist ndx abs Fun UnifSet ndx metUnif abs dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
73 57 71 72 mp2an Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
74 31 73 pm3.2i Fun Base ndx + ndx + ndx × * ndx * Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
75 dmun dom Base ndx + ndx + ndx × * ndx * = dom Base ndx + ndx + ndx × dom * ndx *
76 dmun dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs
77 75 76 ineq12i dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs
78 18 58 ineq12i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = Base ndx + ndx ndx TopSet ndx ndx dist ndx
79 tsetndxnbasendx TopSet ndx Base ndx
80 79 necomi Base ndx TopSet ndx
81 tsetndxnplusgndx TopSet ndx + ndx
82 81 necomi + ndx TopSet ndx
83 tsetndxnmulrndx TopSet ndx ndx
84 83 necomi ndx TopSet ndx
85 80 82 84 3pm3.2i Base ndx TopSet ndx + ndx TopSet ndx ndx TopSet ndx
86 plendxnbasendx ndx Base ndx
87 86 necomi Base ndx ndx
88 plendxnplusgndx ndx + ndx
89 88 necomi + ndx ndx
90 plendxnmulrndx ndx ndx
91 90 necomi ndx ndx
92 87 89 91 3pm3.2i Base ndx ndx + ndx ndx ndx ndx
93 dsndxnbasendx dist ndx Base ndx
94 93 necomi Base ndx dist ndx
95 dsndxnplusgndx dist ndx + ndx
96 95 necomi + ndx dist ndx
97 dsndxnmulrndx dist ndx ndx
98 97 necomi ndx dist ndx
99 94 96 98 3pm3.2i Base ndx dist ndx + ndx dist ndx ndx dist ndx
100 disjtp2 Base ndx TopSet ndx + ndx TopSet ndx ndx TopSet ndx Base ndx ndx + ndx ndx ndx ndx Base ndx dist ndx + ndx dist ndx ndx dist ndx Base ndx + ndx ndx TopSet ndx ndx dist ndx =
101 85 92 99 100 mp3an Base ndx + ndx ndx TopSet ndx ndx dist ndx =
102 78 101 eqtri dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs =
103 18 59 ineq12i dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs = Base ndx + ndx ndx UnifSet ndx
104 unifndxnbasendx UnifSet ndx Base ndx
105 104 necomi Base ndx UnifSet ndx
106 105 a1i + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx Base ndx UnifSet ndx
107 3simpa + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx
108 3anass Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx
109 106 107 108 sylanbrc + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx
110 109 adantr + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx
111 61 110 ax-mp Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx
112 disjtpsn Base ndx UnifSet ndx + ndx UnifSet ndx ndx UnifSet ndx Base ndx + ndx ndx UnifSet ndx =
113 111 112 ax-mp Base ndx + ndx ndx UnifSet ndx =
114 103 113 eqtri dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs =
115 102 114 pm3.2i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs =
116 undisj2 dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs = dom Base ndx + ndx + ndx × dom UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
117 115 116 mpbi dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
118 19 58 ineq12i dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = * ndx TopSet ndx ndx dist ndx
119 tsetndxnstarvndx TopSet ndx * ndx
120 necom * ndx ndx ndx * ndx
121 120 biimpi * ndx ndx ndx * ndx
122 121 adantr * ndx ndx TopSet ndx ndx ndx * ndx
123 32 122 ax-mp ndx * ndx
124 necom * ndx dist ndx dist ndx * ndx
125 124 biimpi * ndx dist ndx dist ndx * ndx
126 125 adantr * ndx dist ndx ndx dist ndx dist ndx * ndx
127 36 126 ax-mp dist ndx * ndx
128 disjtpsn TopSet ndx * ndx ndx * ndx dist ndx * ndx TopSet ndx ndx dist ndx * ndx =
129 119 123 127 128 mp3an TopSet ndx ndx dist ndx * ndx =
130 129 ineqcomi * ndx TopSet ndx ndx dist ndx =
131 118 130 eqtri dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs =
132 19 59 ineq12i dom * ndx * dom UnifSet ndx metUnif abs = * ndx UnifSet ndx
133 simpl3 + ndx UnifSet ndx ndx UnifSet ndx * ndx UnifSet ndx ndx UnifSet ndx dist ndx UnifSet ndx * ndx UnifSet ndx
134 61 133 ax-mp * ndx UnifSet ndx
135 disjsn2 * ndx UnifSet ndx * ndx UnifSet ndx =
136 134 135 ax-mp * ndx UnifSet ndx =
137 132 136 eqtri dom * ndx * dom UnifSet ndx metUnif abs =
138 131 137 pm3.2i dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = dom * ndx * dom UnifSet ndx metUnif abs =
139 undisj2 dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs = dom * ndx * dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
140 138 139 mpbi dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
141 117 140 pm3.2i dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
142 undisj1 dom Base ndx + ndx + ndx × dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs = dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
143 141 142 mpbi dom Base ndx + ndx + ndx × dom * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs dom UnifSet ndx metUnif abs =
144 77 143 eqtri dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs =
145 funun Fun Base ndx + ndx + ndx × * ndx * Fun TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs dom Base ndx + ndx + ndx × * ndx * dom TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs = Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
146 74 144 145 mp2an Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
147 df-cnfld fld = Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
148 147 funeqi Fun fld Fun Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
149 146 148 mpbir Fun fld