Metamath Proof Explorer


Theorem cnntr

Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion cnntr JTopOnXKTopOnYFJCnKF:XYx𝒫YF-1intKxintJF-1x

Proof

Step Hyp Ref Expression
1 cnf2 JTopOnXKTopOnYFJCnKF:XY
2 1 3expia JTopOnXKTopOnYFJCnKF:XY
3 elpwi x𝒫YxY
4 3 adantl JTopOnXKTopOnYx𝒫YxY
5 toponuni KTopOnYY=K
6 5 ad2antlr JTopOnXKTopOnYx𝒫YY=K
7 4 6 sseqtrd JTopOnXKTopOnYx𝒫YxK
8 eqid K=K
9 8 cnntri FJCnKxKF-1intKxintJF-1x
10 9 expcom xKFJCnKF-1intKxintJF-1x
11 7 10 syl JTopOnXKTopOnYx𝒫YFJCnKF-1intKxintJF-1x
12 11 ralrimdva JTopOnXKTopOnYFJCnKx𝒫YF-1intKxintJF-1x
13 2 12 jcad JTopOnXKTopOnYFJCnKF:XYx𝒫YF-1intKxintJF-1x
14 toponss KTopOnYxKxY
15 velpw x𝒫YxY
16 14 15 sylibr KTopOnYxKx𝒫Y
17 16 ex KTopOnYxKx𝒫Y
18 17 ad2antlr JTopOnXKTopOnYF:XYxKx𝒫Y
19 18 imim1d JTopOnXKTopOnYF:XYx𝒫YF-1intKxintJF-1xxKF-1intKxintJF-1x
20 topontop JTopOnXJTop
21 20 ad3antrrr JTopOnXKTopOnYF:XYxKJTop
22 cnvimass F-1xdomF
23 fdm F:XYdomF=X
24 23 ad2antlr JTopOnXKTopOnYF:XYxKdomF=X
25 toponuni JTopOnXX=J
26 25 ad3antrrr JTopOnXKTopOnYF:XYxKX=J
27 24 26 eqtrd JTopOnXKTopOnYF:XYxKdomF=J
28 22 27 sseqtrid JTopOnXKTopOnYF:XYxKF-1xJ
29 eqid J=J
30 29 ntrss2 JTopF-1xJintJF-1xF-1x
31 21 28 30 syl2anc JTopOnXKTopOnYF:XYxKintJF-1xF-1x
32 eqss intJF-1x=F-1xintJF-1xF-1xF-1xintJF-1x
33 32 baib intJF-1xF-1xintJF-1x=F-1xF-1xintJF-1x
34 31 33 syl JTopOnXKTopOnYF:XYxKintJF-1x=F-1xF-1xintJF-1x
35 29 isopn3 JTopF-1xJF-1xJintJF-1x=F-1x
36 21 28 35 syl2anc JTopOnXKTopOnYF:XYxKF-1xJintJF-1x=F-1x
37 topontop KTopOnYKTop
38 37 ad3antlr JTopOnXKTopOnYF:XYxKKTop
39 isopn3i KTopxKintKx=x
40 38 39 sylancom JTopOnXKTopOnYF:XYxKintKx=x
41 40 imaeq2d JTopOnXKTopOnYF:XYxKF-1intKx=F-1x
42 41 sseq1d JTopOnXKTopOnYF:XYxKF-1intKxintJF-1xF-1xintJF-1x
43 34 36 42 3bitr4rd JTopOnXKTopOnYF:XYxKF-1intKxintJF-1xF-1xJ
44 43 pm5.74da JTopOnXKTopOnYF:XYxKF-1intKxintJF-1xxKF-1xJ
45 19 44 sylibd JTopOnXKTopOnYF:XYx𝒫YF-1intKxintJF-1xxKF-1xJ
46 45 ralimdv2 JTopOnXKTopOnYF:XYx𝒫YF-1intKxintJF-1xxKF-1xJ
47 46 imdistanda JTopOnXKTopOnYF:XYx𝒫YF-1intKxintJF-1xF:XYxKF-1xJ
48 iscn JTopOnXKTopOnYFJCnKF:XYxKF-1xJ
49 47 48 sylibrd JTopOnXKTopOnYF:XYx𝒫YF-1intKxintJF-1xFJCnK
50 13 49 impbid JTopOnXKTopOnYFJCnKF:XYx𝒫YF-1intKxintJF-1x