Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnntr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnf2 | |
|
2 | 1 | 3expia | |
3 | elpwi | |
|
4 | 3 | adantl | |
5 | toponuni | |
|
6 | 5 | ad2antlr | |
7 | 4 6 | sseqtrd | |
8 | eqid | |
|
9 | 8 | cnntri | |
10 | 9 | expcom | |
11 | 7 10 | syl | |
12 | 11 | ralrimdva | |
13 | 2 12 | jcad | |
14 | toponss | |
|
15 | velpw | |
|
16 | 14 15 | sylibr | |
17 | 16 | ex | |
18 | 17 | ad2antlr | |
19 | 18 | imim1d | |
20 | topontop | |
|
21 | 20 | ad3antrrr | |
22 | cnvimass | |
|
23 | fdm | |
|
24 | 23 | ad2antlr | |
25 | toponuni | |
|
26 | 25 | ad3antrrr | |
27 | 24 26 | eqtrd | |
28 | 22 27 | sseqtrid | |
29 | eqid | |
|
30 | 29 | ntrss2 | |
31 | 21 28 30 | syl2anc | |
32 | eqss | |
|
33 | 32 | baib | |
34 | 31 33 | syl | |
35 | 29 | isopn3 | |
36 | 21 28 35 | syl2anc | |
37 | topontop | |
|
38 | 37 | ad3antlr | |
39 | isopn3i | |
|
40 | 38 39 | sylancom | |
41 | 40 | imaeq2d | |
42 | 41 | sseq1d | |
43 | 34 36 42 | 3bitr4rd | |
44 | 43 | pm5.74da | |
45 | 19 44 | sylibd | |
46 | 45 | ralimdv2 | |
47 | 46 | imdistanda | |
48 | iscn | |
|
49 | 47 48 | sylibrd | |
50 | 13 49 | impbid | |