Metamath Proof Explorer


Theorem cnzh

Description: The ZZ -module of CC is a normed module. (Contributed by Thierry Arnoux, 25-Feb-2018)

Ref Expression
Assertion cnzh ℤModfldNrmMod

Proof

Step Hyp Ref Expression
1 cnnrg fldNrmRing
2 eqid ℤModfld=ℤModfld
3 2 zhmnrg fldNrmRingℤModfldNrmRing
4 nrgngp ℤModfldNrmRingℤModfldNrmGrp
5 1 3 4 mp2b ℤModfldNrmGrp
6 nrgring fldNrmRingfldRing
7 ringabl fldRingfldAbel
8 1 6 7 mp2b fldAbel
9 2 zlmlmod fldAbelℤModfldLMod
10 8 9 mpbi ℤModfldLMod
11 zringnrg ringNrmRing
12 5 10 11 3pm3.2i ℤModfldNrmGrpℤModfldLModringNrmRing
13 simpl zxz
14 13 zcnd zxz
15 simpr zxx
16 14 15 absmuld zxzx=zx
17 cnfldmulg zxzfldx=zx
18 17 fveq2d zxzfldx=zx
19 fvres zabsz=z
20 19 adantr zxabsz=z
21 20 oveq1d zxabszx=zx
22 16 18 21 3eqtr4d zxzfldx=abszx
23 22 rgen2 zxzfldx=abszx
24 cnfldbas =Basefld
25 2 24 zlmbas =BaseℤModfld
26 cnfldex fldV
27 cnfldnm abs=normfld
28 2 27 zlmnm fldVabs=normℤModfld
29 26 28 ax-mp abs=normℤModfld
30 eqid fld=fld
31 2 30 zlmvsca fld=ℤModfld
32 2 zlmsca fldVring=ScalarℤModfld
33 26 32 ax-mp ring=ScalarℤModfld
34 zringbas =Basering
35 zringnm normring=abs
36 35 eqcomi abs=normring
37 25 29 31 33 34 36 isnlm ℤModfldNrmModℤModfldNrmGrpℤModfldLModringNrmRingzxzfldx=abszx
38 12 23 37 mpbir2an ℤModfldNrmMod