Metamath Proof Explorer


Theorem coe1termlem

Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis coe1term.1 F=zAzN
Assertion coe1termlem AN0coeffF=n0ifn=NA0A0degF=N

Proof

Step Hyp Ref Expression
1 coe1term.1 F=zAzN
2 ssid
3 1 ply1term AN0FPoly
4 2 3 mp3an1 AN0FPoly
5 simpr AN0N0
6 simpl AN0A
7 0cn 0
8 ifcl A0ifn=NA0
9 6 7 8 sylancl AN0ifn=NA0
10 9 adantr AN0n0ifn=NA0
11 10 fmpttd AN0n0ifn=NA0:0
12 eqid n0ifn=NA0=n0ifn=NA0
13 eqeq1 n=kn=Nk=N
14 13 ifbid n=kifn=NA0=ifk=NA0
15 simpr AN0k0k0
16 ifcl A0ifk=NA0
17 6 7 16 sylancl AN0ifk=NA0
18 17 adantr AN0k0ifk=NA0
19 12 14 15 18 fvmptd3 AN0k0n0ifn=NA0k=ifk=NA0
20 19 neeq1d AN0k0n0ifn=NA0k0ifk=NA00
21 nn0re N0N
22 21 leidd N0NN
23 22 ad2antlr AN0k0NN
24 iffalse ¬k=Nifk=NA0=0
25 24 necon1ai ifk=NA00k=N
26 25 breq1d ifk=NA00kNNN
27 23 26 syl5ibrcom AN0k0ifk=NA00kN
28 20 27 sylbid AN0k0n0ifn=NA0k0kN
29 28 ralrimiva AN0k0n0ifn=NA0k0kN
30 plyco0 N0n0ifn=NA0:0n0ifn=NA0N+1=0k0n0ifn=NA0k0kN
31 5 11 30 syl2anc AN0n0ifn=NA0N+1=0k0n0ifn=NA0k0kN
32 29 31 mpbird AN0n0ifn=NA0N+1=0
33 1 ply1termlem AN0F=zk=0Nifk=NA0zk
34 elfznn0 k0Nk0
35 19 oveq1d AN0k0n0ifn=NA0kzk=ifk=NA0zk
36 34 35 sylan2 AN0k0Nn0ifn=NA0kzk=ifk=NA0zk
37 36 sumeq2dv AN0k=0Nn0ifn=NA0kzk=k=0Nifk=NA0zk
38 37 mpteq2dv AN0zk=0Nn0ifn=NA0kzk=zk=0Nifk=NA0zk
39 33 38 eqtr4d AN0F=zk=0Nn0ifn=NA0kzk
40 4 5 11 32 39 coeeq AN0coeffF=n0ifn=NA0
41 4 adantr AN0A0FPoly
42 5 adantr AN0A0N0
43 11 adantr AN0A0n0ifn=NA0:0
44 32 adantr AN0A0n0ifn=NA0N+1=0
45 39 adantr AN0A0F=zk=0Nn0ifn=NA0kzk
46 iftrue n=Nifn=NA0=A
47 46 12 fvmptg N0An0ifn=NA0N=A
48 47 ancoms AN0n0ifn=NA0N=A
49 48 neeq1d AN0n0ifn=NA0N0A0
50 49 biimpar AN0A0n0ifn=NA0N0
51 41 42 43 44 45 50 dgreq AN0A0degF=N
52 51 ex AN0A0degF=N
53 40 52 jca AN0coeffF=n0ifn=NA0A0degF=N