Description: The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | coe1term.1 | |
|
Assertion | coe1termlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1term.1 | |
|
2 | ssid | |
|
3 | 1 | ply1term | |
4 | 2 3 | mp3an1 | |
5 | simpr | |
|
6 | simpl | |
|
7 | 0cn | |
|
8 | ifcl | |
|
9 | 6 7 8 | sylancl | |
10 | 9 | adantr | |
11 | 10 | fmpttd | |
12 | eqid | |
|
13 | eqeq1 | |
|
14 | 13 | ifbid | |
15 | simpr | |
|
16 | ifcl | |
|
17 | 6 7 16 | sylancl | |
18 | 17 | adantr | |
19 | 12 14 15 18 | fvmptd3 | |
20 | 19 | neeq1d | |
21 | nn0re | |
|
22 | 21 | leidd | |
23 | 22 | ad2antlr | |
24 | iffalse | |
|
25 | 24 | necon1ai | |
26 | 25 | breq1d | |
27 | 23 26 | syl5ibrcom | |
28 | 20 27 | sylbid | |
29 | 28 | ralrimiva | |
30 | plyco0 | |
|
31 | 5 11 30 | syl2anc | |
32 | 29 31 | mpbird | |
33 | 1 | ply1termlem | |
34 | elfznn0 | |
|
35 | 19 | oveq1d | |
36 | 34 35 | sylan2 | |
37 | 36 | sumeq2dv | |
38 | 37 | mpteq2dv | |
39 | 33 38 | eqtr4d | |
40 | 4 5 11 32 39 | coeeq | |
41 | 4 | adantr | |
42 | 5 | adantr | |
43 | 11 | adantr | |
44 | 32 | adantr | |
45 | 39 | adantr | |
46 | iftrue | |
|
47 | 46 12 | fvmptg | |
48 | 47 | ancoms | |
49 | 48 | neeq1d | |
50 | 49 | biimpar | |
51 | 41 42 43 44 45 50 | dgreq | |
52 | 51 | ex | |
53 | 40 52 | jca | |