Metamath Proof Explorer


Theorem coefv0

Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypothesis coefv0.1 A=coeffF
Assertion coefv0 FPolySF0=A0

Proof

Step Hyp Ref Expression
1 coefv0.1 A=coeffF
2 0cn 0
3 eqid degF=degF
4 1 3 coeid2 FPolyS0F0=k=0degFAk0k
5 2 4 mpan2 FPolySF0=k=0degFAk0k
6 dgrcl FPolySdegF0
7 nn0uz 0=0
8 6 7 eleqtrdi FPolySdegF0
9 fzss2 degF0000degF
10 8 9 syl FPolyS000degF
11 elfz1eq k00k=0
12 fveq2 k=0Ak=A0
13 oveq2 k=00k=00
14 0exp0e1 00=1
15 13 14 eqtrdi k=00k=1
16 12 15 oveq12d k=0Ak0k=A01
17 11 16 syl k00Ak0k=A01
18 1 coef3 FPolySA:0
19 0nn0 00
20 ffvelcdm A:000A0
21 18 19 20 sylancl FPolySA0
22 21 mulridd FPolySA01=A0
23 17 22 sylan9eqr FPolySk00Ak0k=A0
24 21 adantr FPolySk00A0
25 23 24 eqeltrd FPolySk00Ak0k
26 eldifn k0degF00¬k00
27 eldifi k0degF00k0degF
28 elfznn0 k0degFk0
29 27 28 syl k0degF00k0
30 elnn0 k0kk=0
31 29 30 sylib k0degF00kk=0
32 31 ord k0degF00¬kk=0
33 id k=0k=0
34 0z 0
35 elfz3 0000
36 34 35 ax-mp 000
37 33 36 eqeltrdi k=0k00
38 32 37 syl6 k0degF00¬kk00
39 26 38 mt3d k0degF00k
40 39 adantl FPolySk0degF00k
41 40 0expd FPolySk0degF000k=0
42 41 oveq2d FPolySk0degF00Ak0k=Ak0
43 ffvelcdm A:0k0Ak
44 18 29 43 syl2an FPolySk0degF00Ak
45 44 mul01d FPolySk0degF00Ak0=0
46 42 45 eqtrd FPolySk0degF00Ak0k=0
47 fzfid FPolyS0degFFin
48 10 25 46 47 fsumss FPolySk=00Ak0k=k=0degFAk0k
49 22 21 eqeltrd FPolySA01
50 16 fsum1 0A01k=00Ak0k=A01
51 34 49 50 sylancr FPolySk=00Ak0k=A01
52 51 22 eqtrd FPolySk=00Ak0k=A0
53 5 48 52 3eqtr2d FPolySF0=A0