Description: The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | coefv0.1 | |
|
Assertion | coefv0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coefv0.1 | |
|
2 | 0cn | |
|
3 | eqid | |
|
4 | 1 3 | coeid2 | |
5 | 2 4 | mpan2 | |
6 | dgrcl | |
|
7 | nn0uz | |
|
8 | 6 7 | eleqtrdi | |
9 | fzss2 | |
|
10 | 8 9 | syl | |
11 | elfz1eq | |
|
12 | fveq2 | |
|
13 | oveq2 | |
|
14 | 0exp0e1 | |
|
15 | 13 14 | eqtrdi | |
16 | 12 15 | oveq12d | |
17 | 11 16 | syl | |
18 | 1 | coef3 | |
19 | 0nn0 | |
|
20 | ffvelcdm | |
|
21 | 18 19 20 | sylancl | |
22 | 21 | mulridd | |
23 | 17 22 | sylan9eqr | |
24 | 21 | adantr | |
25 | 23 24 | eqeltrd | |
26 | eldifn | |
|
27 | eldifi | |
|
28 | elfznn0 | |
|
29 | 27 28 | syl | |
30 | elnn0 | |
|
31 | 29 30 | sylib | |
32 | 31 | ord | |
33 | id | |
|
34 | 0z | |
|
35 | elfz3 | |
|
36 | 34 35 | ax-mp | |
37 | 33 36 | eqeltrdi | |
38 | 32 37 | syl6 | |
39 | 26 38 | mt3d | |
40 | 39 | adantl | |
41 | 40 | 0expd | |
42 | 41 | oveq2d | |
43 | ffvelcdm | |
|
44 | 18 29 43 | syl2an | |
45 | 44 | mul01d | |
46 | 42 45 | eqtrd | |
47 | fzfid | |
|
48 | 10 25 46 47 | fsumss | |
49 | 22 21 | eqeltrd | |
50 | 16 | fsum1 | |
51 | 34 49 50 | sylancr | |
52 | 51 22 | eqtrd | |
53 | 5 48 52 | 3eqtr2d | |