Metamath Proof Explorer


Theorem conjga

Description: Group conjugation induces a group action. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses cntrval2.1 B = Base M
cntrval2.2 + ˙ = + M
cntrval2.3 - ˙ = - M
cntrval2.4 ˙ = x B , y B x + ˙ y - ˙ x
Assertion conjga M Grp ˙ M GrpAct B

Proof

Step Hyp Ref Expression
1 cntrval2.1 B = Base M
2 cntrval2.2 + ˙ = + M
3 cntrval2.3 - ˙ = - M
4 cntrval2.4 ˙ = x B , y B x + ˙ y - ˙ x
5 id M Grp M Grp
6 1 fvexi B V
7 6 a1i M Grp B V
8 5 adantr M Grp z B × B M Grp
9 xp1st z B × B 1 st z B
10 9 adantl M Grp z B × B 1 st z B
11 xp2nd z B × B 2 nd z B
12 11 adantl M Grp z B × B 2 nd z B
13 1 2 8 10 12 grpcld M Grp z B × B 1 st z + ˙ 2 nd z B
14 1 3 8 13 10 grpsubcld M Grp z B × B 1 st z + ˙ 2 nd z - ˙ 1 st z B
15 vex x V
16 vex y V
17 15 16 op1std z = x y 1 st z = x
18 15 16 op2ndd z = x y 2 nd z = y
19 17 18 oveq12d z = x y 1 st z + ˙ 2 nd z = x + ˙ y
20 19 17 oveq12d z = x y 1 st z + ˙ 2 nd z - ˙ 1 st z = x + ˙ y - ˙ x
21 20 mpompt z B × B 1 st z + ˙ 2 nd z - ˙ 1 st z = x B , y B x + ˙ y - ˙ x
22 4 21 eqtr4i ˙ = z B × B 1 st z + ˙ 2 nd z - ˙ 1 st z
23 14 22 fmptd M Grp ˙ : B × B B
24 4 a1i M Grp z B ˙ = x B , y B x + ˙ y - ˙ x
25 simplr M Grp z B x = 0 M y = z x = 0 M
26 simpr M Grp z B x = 0 M y = z y = z
27 25 26 oveq12d M Grp z B x = 0 M y = z x + ˙ y = 0 M + ˙ z
28 27 25 oveq12d M Grp z B x = 0 M y = z x + ˙ y - ˙ x = 0 M + ˙ z - ˙ 0 M
29 5 ad3antrrr M Grp z B x = 0 M y = z M Grp
30 eqid 0 M = 0 M
31 1 30 grpidcl M Grp 0 M B
32 31 ad3antrrr M Grp z B x = 0 M y = z 0 M B
33 simpllr M Grp z B x = 0 M y = z z B
34 1 2 29 32 33 grpcld M Grp z B x = 0 M y = z 0 M + ˙ z B
35 1 30 3 grpsubid1 M Grp 0 M + ˙ z B 0 M + ˙ z - ˙ 0 M = 0 M + ˙ z
36 29 34 35 syl2anc M Grp z B x = 0 M y = z 0 M + ˙ z - ˙ 0 M = 0 M + ˙ z
37 1 2 30 29 33 grplidd M Grp z B x = 0 M y = z 0 M + ˙ z = z
38 28 36 37 3eqtrd M Grp z B x = 0 M y = z x + ˙ y - ˙ x = z
39 38 anasss M Grp z B x = 0 M y = z x + ˙ y - ˙ x = z
40 31 adantr M Grp z B 0 M B
41 simpr M Grp z B z B
42 24 39 40 41 41 ovmpod M Grp z B 0 M ˙ z = z
43 5 ad3antrrr M Grp z B u B v B M Grp
44 simplr M Grp z B u B v B u B
45 simpr M Grp z B u B v B v B
46 simpllr M Grp z B u B v B z B
47 1 2 43 44 45 46 grpassd M Grp z B u B v B u + ˙ v + ˙ z = u + ˙ v + ˙ z
48 47 oveq1d M Grp z B u B v B u + ˙ v + ˙ z - ˙ u + ˙ v = u + ˙ v + ˙ z - ˙ u + ˙ v
49 1 2 43 45 46 grpcld M Grp z B u B v B v + ˙ z B
50 1 2 43 44 49 grpcld M Grp z B u B v B u + ˙ v + ˙ z B
51 1 2 3 grpsubsub4 M Grp u + ˙ v + ˙ z B v B u B u + ˙ v + ˙ z - ˙ v - ˙ u = u + ˙ v + ˙ z - ˙ u + ˙ v
52 43 50 45 44 51 syl13anc M Grp z B u B v B u + ˙ v + ˙ z - ˙ v - ˙ u = u + ˙ v + ˙ z - ˙ u + ˙ v
53 1 2 3 grpaddsubass M Grp u B v + ˙ z B v B u + ˙ v + ˙ z - ˙ v = u + ˙ v + ˙ z - ˙ v
54 43 44 49 45 53 syl13anc M Grp z B u B v B u + ˙ v + ˙ z - ˙ v = u + ˙ v + ˙ z - ˙ v
55 54 oveq1d M Grp z B u B v B u + ˙ v + ˙ z - ˙ v - ˙ u = u + ˙ v + ˙ z - ˙ v - ˙ u
56 48 52 55 3eqtr2d M Grp z B u B v B u + ˙ v + ˙ z - ˙ u + ˙ v = u + ˙ v + ˙ z - ˙ v - ˙ u
57 4 a1i M Grp z B u B v B ˙ = x B , y B x + ˙ y - ˙ x
58 simprl M Grp z B u B v B x = u + ˙ v y = z x = u + ˙ v
59 simprr M Grp z B u B v B x = u + ˙ v y = z y = z
60 58 59 oveq12d M Grp z B u B v B x = u + ˙ v y = z x + ˙ y = u + ˙ v + ˙ z
61 60 58 oveq12d M Grp z B u B v B x = u + ˙ v y = z x + ˙ y - ˙ x = u + ˙ v + ˙ z - ˙ u + ˙ v
62 1 2 43 44 45 grpcld M Grp z B u B v B u + ˙ v B
63 ovexd M Grp z B u B v B u + ˙ v + ˙ z - ˙ u + ˙ v V
64 57 61 62 46 63 ovmpod M Grp z B u B v B u + ˙ v ˙ z = u + ˙ v + ˙ z - ˙ u + ˙ v
65 simprl M Grp z B u B v B x = u y = v ˙ z x = u
66 simprr M Grp z B u B v B x = u y = v ˙ z y = v ˙ z
67 simprl M Grp z B u B v B x = v y = z x = v
68 simprr M Grp z B u B v B x = v y = z y = z
69 67 68 oveq12d M Grp z B u B v B x = v y = z x + ˙ y = v + ˙ z
70 69 67 oveq12d M Grp z B u B v B x = v y = z x + ˙ y - ˙ x = v + ˙ z - ˙ v
71 ovexd M Grp z B u B v B v + ˙ z - ˙ v V
72 57 70 45 46 71 ovmpod M Grp z B u B v B v ˙ z = v + ˙ z - ˙ v
73 72 adantr M Grp z B u B v B x = u y = v ˙ z v ˙ z = v + ˙ z - ˙ v
74 66 73 eqtrd M Grp z B u B v B x = u y = v ˙ z y = v + ˙ z - ˙ v
75 65 74 oveq12d M Grp z B u B v B x = u y = v ˙ z x + ˙ y = u + ˙ v + ˙ z - ˙ v
76 75 65 oveq12d M Grp z B u B v B x = u y = v ˙ z x + ˙ y - ˙ x = u + ˙ v + ˙ z - ˙ v - ˙ u
77 23 ad3antrrr M Grp z B u B v B ˙ : B × B B
78 77 45 46 fovcdmd M Grp z B u B v B v ˙ z B
79 ovexd M Grp z B u B v B u + ˙ v + ˙ z - ˙ v - ˙ u V
80 57 76 44 78 79 ovmpod M Grp z B u B v B u ˙ v ˙ z = u + ˙ v + ˙ z - ˙ v - ˙ u
81 56 64 80 3eqtr4d M Grp z B u B v B u + ˙ v ˙ z = u ˙ v ˙ z
82 81 anasss M Grp z B u B v B u + ˙ v ˙ z = u ˙ v ˙ z
83 82 ralrimivva M Grp z B u B v B u + ˙ v ˙ z = u ˙ v ˙ z
84 42 83 jca M Grp z B 0 M ˙ z = z u B v B u + ˙ v ˙ z = u ˙ v ˙ z
85 84 ralrimiva M Grp z B 0 M ˙ z = z u B v B u + ˙ v ˙ z = u ˙ v ˙ z
86 1 2 30 isga ˙ M GrpAct B M Grp B V ˙ : B × B B z B 0 M ˙ z = z u B v B u + ˙ v ˙ z = u ˙ v ˙ z
87 5 7 23 85 86 syl22anbrc M Grp ˙ M GrpAct B