Metamath Proof Explorer


Theorem constrinvcl

Description: Constructible numbers are closed under complex inverse. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Hypotheses constrinvcl.1 φ X Constr
constrinvcl.2 φ X 0
Assertion constrinvcl φ 1 X Constr

Proof

Step Hyp Ref Expression
1 constrinvcl.1 φ X Constr
2 constrinvcl.2 φ X 0
3 1 adantr φ X X Constr
4 2 adantr φ X X 0
5 simpr φ X X
6 3 4 5 constrreinvcl φ X 1 X Constr
7 1cnd φ 1
8 1 constrcn φ X
9 7 8 2 absdivd φ 1 X = 1 X
10 abs1 1 = 1
11 10 oveq1i 1 X = 1 X
12 9 11 eqtr2di φ 1 X = 1 X
13 8 2 reccld φ 1 X
14 8 2 recne0d φ 1 X 0
15 13 14 efiargd φ e i log 1 X = 1 X 1 X
16 12 15 oveq12d φ 1 X e i log 1 X = 1 X 1 X 1 X
17 13 abscld φ 1 X
18 17 recnd φ 1 X
19 13 14 absne0d φ 1 X 0
20 13 18 19 divcan2d φ 1 X 1 X 1 X = 1 X
21 16 20 eqtrd φ 1 X e i log 1 X = 1 X
22 21 adantr φ ¬ X 1 X e i log 1 X = 1 X
23 0zd φ 0
24 23 zconstr φ 0 Constr
25 1zzd φ 1
26 25 zconstr φ 1 Constr
27 8 abscld φ X
28 27 recnd φ X
29 7 subid1d φ 1 0 = 1
30 29 7 eqeltrd φ 1 0
31 28 30 mulcld φ X 1 0
32 31 addlidd φ 0 + X 1 0 = X 1 0
33 29 oveq2d φ X 1 0 = X 1
34 28 mulridd φ X 1 = X
35 32 33 34 3eqtrrd φ X = 0 + X 1 0
36 8 absge0d φ 0 X
37 27 36 absidd φ X = X
38 28 subid1d φ X 0 = X
39 38 fveq2d φ X 0 = X
40 8 subid1d φ X 0 = X
41 40 fveq2d φ X 0 = X
42 37 39 41 3eqtr4d φ X 0 = X 0
43 24 26 24 1 24 27 28 35 42 constrlccl φ X Constr
44 8 2 absne0d φ X 0
45 43 44 27 constrreinvcl φ 1 X Constr
46 45 adantr φ ¬ X 1 X Constr
47 8 adantr φ ¬ X X
48 2 adantr φ ¬ X X 0
49 8 adantr φ X + X
50 simpr φ X + X +
51 50 rpred φ X + X
52 49 51 negrebd φ X + X
53 52 stoic1a φ ¬ X ¬ X +
54 47 48 53 arginv φ ¬ X log 1 X = log X
55 47 48 53 argcj φ ¬ X log X = log X
56 54 55 eqtr4d φ ¬ X log 1 X = log X
57 56 oveq2d φ ¬ X i log 1 X = i log X
58 57 fveq2d φ ¬ X e i log 1 X = e i log X
59 8 cjcld φ X
60 8 2 cjne0d φ X 0
61 59 60 efiargd φ e i log X = X X
62 61 adantr φ ¬ X e i log X = X X
63 58 62 eqtrd φ ¬ X e i log 1 X = X X
64 1 adantr φ ¬ X X Constr
65 64 constrcjcl φ ¬ X X Constr
66 60 adantr φ ¬ X X 0
67 65 66 constrdircl φ ¬ X X X Constr
68 63 67 eqeltrd φ ¬ X e i log 1 X Constr
69 46 68 constrmulcl φ ¬ X 1 X e i log 1 X Constr
70 22 69 eqeltrrd φ ¬ X 1 X Constr
71 6 70 pm2.61dan φ 1 X Constr