Metamath Proof Explorer


Theorem constrsdrg

Description: Constructible numbers form a subfield of the complex numbers. (Contributed by Thierry Arnoux, 5-Nov-2025)

Ref Expression
Assertion constrsdrg Constr SubDRing fld

Proof

Step Hyp Ref Expression
1 cnfldfld fld Field
2 1 a1i fld Field
3 2 flddrngd fld DivRing
4 3 drngringd fld Ring
5 3 drnggrpd fld Grp
6 simpr x Constr x Constr
7 6 constrcn x Constr x
8 7 ex x Constr x
9 8 ssrdv Constr
10 1zzd 1
11 10 zconstr 1 Constr
12 11 ne0d Constr
13 simplr x Constr y Constr x Constr
14 simpr x Constr y Constr y Constr
15 13 14 constraddcl x Constr y Constr x + y Constr
16 15 ralrimiva x Constr y Constr x + y Constr
17 cnfldneg x inv g fld x = x
18 7 17 syl x Constr inv g fld x = x
19 6 constrnegcl x Constr x Constr
20 18 19 eqeltrd x Constr inv g fld x Constr
21 16 20 jca x Constr y Constr x + y Constr inv g fld x Constr
22 21 ralrimiva x Constr y Constr x + y Constr inv g fld x Constr
23 cnfldbas = Base fld
24 cnfldadd + = + fld
25 eqid inv g fld = inv g fld
26 23 24 25 issubg2 fld Grp Constr SubGrp fld Constr Constr x Constr y Constr x + y Constr inv g fld x Constr
27 26 biimpar fld Grp Constr Constr x Constr y Constr x + y Constr inv g fld x Constr Constr SubGrp fld
28 5 9 12 22 27 syl13anc Constr SubGrp fld
29 13 14 constrmulcl x Constr y Constr x y Constr
30 29 anasss x Constr y Constr x y Constr
31 30 ralrimivva x Constr y Constr x y Constr
32 cnfld1 1 = 1 fld
33 cnfldmul × = fld
34 23 32 33 issubrg2 fld Ring Constr SubRing fld Constr SubGrp fld 1 Constr x Constr y Constr x y Constr
35 34 biimpar fld Ring Constr SubGrp fld 1 Constr x Constr y Constr x y Constr Constr SubRing fld
36 4 28 11 31 35 syl13anc Constr SubRing fld
37 simpr x Constr 0 x Constr 0
38 37 eldifad x Constr 0 x Constr
39 38 constrcn x Constr 0 x
40 eldifsni x Constr 0 x 0
41 40 adantl x Constr 0 x 0
42 cnfldinv x x 0 inv r fld x = 1 x
43 39 41 42 syl2anc x Constr 0 inv r fld x = 1 x
44 38 41 constrinvcl x Constr 0 1 x Constr
45 43 44 eqeltrd x Constr 0 inv r fld x Constr
46 45 ralrimiva x Constr 0 inv r fld x Constr
47 eqid inv r fld = inv r fld
48 cnfld0 0 = 0 fld
49 47 48 issdrg2 Constr SubDRing fld fld DivRing Constr SubRing fld x Constr 0 inv r fld x Constr
50 3 36 46 49 syl3anbrc Constr SubDRing fld
51 50 mptru Constr SubDRing fld