Metamath Proof Explorer


Theorem cplgr3v

Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 5-Nov-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypotheses cplgr3v.e E=EdgG
cplgr3v.t VtxG=ABC
Assertion cplgr3v AXBYCZGUPGraphABACBCGComplGraphABEBCECAE

Proof

Step Hyp Ref Expression
1 cplgr3v.e E=EdgG
2 cplgr3v.t VtxG=ABC
3 2 eqcomi ABC=VtxG
4 3 iscplgrnb GUPGraphGComplGraphvABCnABCvnGNeighbVtxv
5 4 3ad2ant2 AXBYCZGUPGraphABACBCGComplGraphvABCnABCvnGNeighbVtxv
6 sneq v=Av=A
7 6 difeq2d v=AABCv=ABCA
8 tprot ABC=BCA
9 8 difeq1i ABCA=BCAA
10 necom ABBA
11 necom ACCA
12 diftpsn3 BACABCAA=BC
13 10 11 12 syl2anb ABACBCAA=BC
14 13 3adant3 ABACBCBCAA=BC
15 9 14 eqtrid ABACBCABCA=BC
16 15 3ad2ant3 AXBYCZGUPGraphABACBCABCA=BC
17 7 16 sylan9eqr AXBYCZGUPGraphABACBCv=AABCv=BC
18 oveq2 v=AGNeighbVtxv=GNeighbVtxA
19 18 eleq2d v=AnGNeighbVtxvnGNeighbVtxA
20 19 adantl AXBYCZGUPGraphABACBCv=AnGNeighbVtxvnGNeighbVtxA
21 17 20 raleqbidv AXBYCZGUPGraphABACBCv=AnABCvnGNeighbVtxvnBCnGNeighbVtxA
22 sneq v=Bv=B
23 22 difeq2d v=BABCv=ABCB
24 tprot CAB=ABC
25 24 eqcomi ABC=CAB
26 25 difeq1i ABCB=CABB
27 necom BCCB
28 27 biimpi BCCB
29 28 anim2i ABBCABCB
30 29 ancomd ABBCCBAB
31 diftpsn3 CBABCABB=CA
32 30 31 syl ABBCCABB=CA
33 32 3adant2 ABACBCCABB=CA
34 26 33 eqtrid ABACBCABCB=CA
35 34 3ad2ant3 AXBYCZGUPGraphABACBCABCB=CA
36 23 35 sylan9eqr AXBYCZGUPGraphABACBCv=BABCv=CA
37 oveq2 v=BGNeighbVtxv=GNeighbVtxB
38 37 eleq2d v=BnGNeighbVtxvnGNeighbVtxB
39 38 adantl AXBYCZGUPGraphABACBCv=BnGNeighbVtxvnGNeighbVtxB
40 36 39 raleqbidv AXBYCZGUPGraphABACBCv=BnABCvnGNeighbVtxvnCAnGNeighbVtxB
41 sneq v=Cv=C
42 41 difeq2d v=CABCv=ABCC
43 diftpsn3 ACBCABCC=AB
44 43 3adant1 ABACBCABCC=AB
45 44 3ad2ant3 AXBYCZGUPGraphABACBCABCC=AB
46 42 45 sylan9eqr AXBYCZGUPGraphABACBCv=CABCv=AB
47 oveq2 v=CGNeighbVtxv=GNeighbVtxC
48 47 eleq2d v=CnGNeighbVtxvnGNeighbVtxC
49 48 adantl AXBYCZGUPGraphABACBCv=CnGNeighbVtxvnGNeighbVtxC
50 46 49 raleqbidv AXBYCZGUPGraphABACBCv=CnABCvnGNeighbVtxvnABnGNeighbVtxC
51 simp1 AXBYCZAX
52 51 3ad2ant1 AXBYCZGUPGraphABACBCAX
53 simp2 AXBYCZBY
54 53 3ad2ant1 AXBYCZGUPGraphABACBCBY
55 simp3 AXBYCZCZ
56 55 3ad2ant1 AXBYCZGUPGraphABACBCCZ
57 21 40 50 52 54 56 raltpd AXBYCZGUPGraphABACBCvABCnABCvnGNeighbVtxvnBCnGNeighbVtxAnCAnGNeighbVtxBnABnGNeighbVtxC
58 eleq1 n=BnGNeighbVtxABGNeighbVtxA
59 eleq1 n=CnGNeighbVtxACGNeighbVtxA
60 58 59 ralprg BYCZnBCnGNeighbVtxABGNeighbVtxACGNeighbVtxA
61 60 3adant1 AXBYCZnBCnGNeighbVtxABGNeighbVtxACGNeighbVtxA
62 eleq1 n=CnGNeighbVtxBCGNeighbVtxB
63 eleq1 n=AnGNeighbVtxBAGNeighbVtxB
64 62 63 ralprg CZAXnCAnGNeighbVtxBCGNeighbVtxBAGNeighbVtxB
65 64 ancoms AXCZnCAnGNeighbVtxBCGNeighbVtxBAGNeighbVtxB
66 65 3adant2 AXBYCZnCAnGNeighbVtxBCGNeighbVtxBAGNeighbVtxB
67 eleq1 n=AnGNeighbVtxCAGNeighbVtxC
68 eleq1 n=BnGNeighbVtxCBGNeighbVtxC
69 67 68 ralprg AXBYnABnGNeighbVtxCAGNeighbVtxCBGNeighbVtxC
70 69 3adant3 AXBYCZnABnGNeighbVtxCAGNeighbVtxCBGNeighbVtxC
71 61 66 70 3anbi123d AXBYCZnBCnGNeighbVtxAnCAnGNeighbVtxBnABnGNeighbVtxCBGNeighbVtxACGNeighbVtxACGNeighbVtxBAGNeighbVtxBAGNeighbVtxCBGNeighbVtxC
72 71 3ad2ant1 AXBYCZGUPGraphABACBCnBCnGNeighbVtxAnCAnGNeighbVtxBnABnGNeighbVtxCBGNeighbVtxACGNeighbVtxACGNeighbVtxBAGNeighbVtxBAGNeighbVtxCBGNeighbVtxC
73 3an6 BGNeighbVtxACGNeighbVtxACGNeighbVtxBAGNeighbVtxBAGNeighbVtxCBGNeighbVtxCBGNeighbVtxACGNeighbVtxBAGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
74 73 a1i AXBYCZGUPGraphABACBCBGNeighbVtxACGNeighbVtxACGNeighbVtxBAGNeighbVtxBAGNeighbVtxCBGNeighbVtxCBGNeighbVtxACGNeighbVtxBAGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
75 nbgrsym BGNeighbVtxAAGNeighbVtxB
76 nbgrsym CGNeighbVtxBBGNeighbVtxC
77 nbgrsym AGNeighbVtxCCGNeighbVtxA
78 75 76 77 3anbi123i BGNeighbVtxACGNeighbVtxBAGNeighbVtxCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxA
79 78 a1i AXBYCZGUPGraphABACBCBGNeighbVtxACGNeighbVtxBAGNeighbVtxCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxA
80 79 anbi1d AXBYCZGUPGraphABACBCBGNeighbVtxACGNeighbVtxBAGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxACGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
81 3anrot CGNeighbVtxAAGNeighbVtxBBGNeighbVtxCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxA
82 81 bicomi AGNeighbVtxBBGNeighbVtxCCGNeighbVtxACGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
83 82 anbi1i AGNeighbVtxBBGNeighbVtxCCGNeighbVtxACGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
84 anidm CGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
85 83 84 bitri AGNeighbVtxBBGNeighbVtxCCGNeighbVtxACGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
86 85 a1i AXBYCZGUPGraphABACBCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxACGNeighbVtxAAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxC
87 tpid1g AXAABC
88 tpid2g BYBABC
89 tpid3g CZCABC
90 87 88 89 3anim123i AXBYCZAABCBABCCABC
91 df-3an AABCBABCCABCAABCBABCCABC
92 90 91 sylib AXBYCZAABCBABCCABC
93 simplr AABCBABCCABCBABC
94 93 anim1ci AABCBABCCABCGUPGraphGUPGraphBABC
95 94 3adant3 AABCBABCCABCGUPGraphABACBCGUPGraphBABC
96 simpll AABCBABCCABCAABC
97 simp1 ABACBCAB
98 96 97 anim12i AABCBABCCABCABACBCAABCAB
99 3 1 nbupgrel GUPGraphBABCAABCABAGNeighbVtxBABE
100 95 98 99 3imp3i2an AABCBABCCABCGUPGraphABACBCAGNeighbVtxBABE
101 simpr AABCBABCCABCCABC
102 101 anim1ci AABCBABCCABCGUPGraphGUPGraphCABC
103 102 3adant3 AABCBABCCABCGUPGraphABACBCGUPGraphCABC
104 simp3 ABACBCBC
105 93 104 anim12i AABCBABCCABCABACBCBABCBC
106 3 1 nbupgrel GUPGraphCABCBABCBCBGNeighbVtxCBCE
107 103 105 106 3imp3i2an AABCBABCCABCGUPGraphABACBCBGNeighbVtxCBCE
108 96 anim1ci AABCBABCCABCGUPGraphGUPGraphAABC
109 108 3adant3 AABCBABCCABCGUPGraphABACBCGUPGraphAABC
110 simp2 ABACBCAC
111 110 necomd ABACBCCA
112 101 111 anim12i AABCBABCCABCABACBCCABCCA
113 3 1 nbupgrel GUPGraphAABCCABCCACGNeighbVtxACAE
114 109 112 113 3imp3i2an AABCBABCCABCGUPGraphABACBCCGNeighbVtxACAE
115 100 107 114 3anbi123d AABCBABCCABCGUPGraphABACBCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAABEBCECAE
116 92 115 syl3an1 AXBYCZGUPGraphABACBCAGNeighbVtxBBGNeighbVtxCCGNeighbVtxAABEBCECAE
117 81 116 bitrid AXBYCZGUPGraphABACBCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxCABEBCECAE
118 80 86 117 3bitrd AXBYCZGUPGraphABACBCBGNeighbVtxACGNeighbVtxBAGNeighbVtxCCGNeighbVtxAAGNeighbVtxBBGNeighbVtxCABEBCECAE
119 72 74 118 3bitrd AXBYCZGUPGraphABACBCnBCnGNeighbVtxAnCAnGNeighbVtxBnABnGNeighbVtxCABEBCECAE
120 5 57 119 3bitrd AXBYCZGUPGraphABACBCGComplGraphABEBCECAE