Metamath Proof Explorer


Theorem cpmidgsumm2pm

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a A=NMatR
cpmidgsum.b B=BaseA
cpmidgsum.p P=Poly1R
cpmidgsum.y Y=NMatP
cpmidgsum.x X=var1R
cpmidgsum.e ×˙=mulGrpP
cpmidgsum.m ·˙=Y
cpmidgsum.1 1˙=1Y
cpmidgsum.u U=algScP
cpmidgsum.c C=NCharPlyMatR
cpmidgsum.k K=CM
cpmidgsum.h H=K·˙1˙
cpmidgsumm2pm.o O=1A
cpmidgsumm2pm.m ˙=A
cpmidgsumm2pm.t T=NmatToPolyMatR
Assertion cpmidgsumm2pm NFinRCRingMBH=Yn0n×˙X·˙Tcoe1Kn˙O

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A=NMatR
2 cpmidgsum.b B=BaseA
3 cpmidgsum.p P=Poly1R
4 cpmidgsum.y Y=NMatP
5 cpmidgsum.x X=var1R
6 cpmidgsum.e ×˙=mulGrpP
7 cpmidgsum.m ·˙=Y
8 cpmidgsum.1 1˙=1Y
9 cpmidgsum.u U=algScP
10 cpmidgsum.c C=NCharPlyMatR
11 cpmidgsum.k K=CM
12 cpmidgsum.h H=K·˙1˙
13 cpmidgsumm2pm.o O=1A
14 cpmidgsumm2pm.m ˙=A
15 cpmidgsumm2pm.t T=NmatToPolyMatR
16 1 2 3 4 5 6 7 8 9 10 11 12 cpmidgsum NFinRCRingMBH=Yn0n×˙X·˙Ucoe1Kn·˙1˙
17 3simpa NFinRCRingMBNFinRCRing
18 17 adantr NFinRCRingMBn0NFinRCRing
19 eqid BaseP=BaseP
20 10 1 2 3 19 chpmatply1 NFinRCRingMBCMBaseP
21 11 20 eqeltrid NFinRCRingMBKBaseP
22 eqid coe1K=coe1K
23 eqid BaseR=BaseR
24 22 19 3 23 coe1fvalcl KBasePn0coe1KnBaseR
25 21 24 sylan NFinRCRingMBn0coe1KnBaseR
26 crngring RCRingRRing
27 26 anim2i NFinRCRingNFinRRing
28 1 matring NFinRRingARing
29 2 13 ringidcl ARingOB
30 27 28 29 3syl NFinRCRingOB
31 30 3adant3 NFinRCRingMBOB
32 31 adantr NFinRCRingMBn0OB
33 eqid BaseY=BaseY
34 15 1 2 3 4 33 23 9 14 7 mat2pmatlin NFinRCRingcoe1KnBaseROBTcoe1Kn˙O=Ucoe1Kn·˙TO
35 18 25 32 34 syl12anc NFinRCRingMBn0Tcoe1Kn˙O=Ucoe1Kn·˙TO
36 15 1 2 3 4 33 mat2pmatrhm NFinRCRingTARingHomY
37 13 8 rhm1 TARingHomYTO=1˙
38 17 36 37 3syl NFinRCRingMBTO=1˙
39 38 adantr NFinRCRingMBn0TO=1˙
40 39 oveq2d NFinRCRingMBn0Ucoe1Kn·˙TO=Ucoe1Kn·˙1˙
41 35 40 eqtr2d NFinRCRingMBn0Ucoe1Kn·˙1˙=Tcoe1Kn˙O
42 41 oveq2d NFinRCRingMBn0n×˙X·˙Ucoe1Kn·˙1˙=n×˙X·˙Tcoe1Kn˙O
43 42 mpteq2dva NFinRCRingMBn0n×˙X·˙Ucoe1Kn·˙1˙=n0n×˙X·˙Tcoe1Kn˙O
44 43 oveq2d NFinRCRingMBYn0n×˙X·˙Ucoe1Kn·˙1˙=Yn0n×˙X·˙Tcoe1Kn˙O
45 16 44 eqtrd NFinRCRingMBH=Yn0n×˙X·˙Tcoe1Kn˙O