| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
|
| 2 |
1
|
3ad2ant3 |
|
| 3 |
|
cshwfn |
|
| 4 |
3
|
3adant3 |
|
| 5 |
|
cshwrn |
|
| 6 |
5
|
3adant3 |
|
| 7 |
|
fnco |
|
| 8 |
2 4 6 7
|
syl3anc |
|
| 9 |
|
wrdco |
|
| 10 |
9
|
3adant2 |
|
| 11 |
|
simp2 |
|
| 12 |
|
cshwfn |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
|
lenco |
|
| 15 |
14
|
3adant2 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
fneq2d |
|
| 18 |
13 17
|
mpbid |
|
| 19 |
15
|
adantr |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
fveq2d |
|
| 22 |
21
|
fveq2d |
|
| 23 |
|
wrdfn |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
24
|
adantr |
|
| 26 |
|
elfzoelz |
|
| 27 |
|
zaddcl |
|
| 28 |
26 11 27
|
syl2anr |
|
| 29 |
|
elfzo0 |
|
| 30 |
29
|
simp2bi |
|
| 31 |
30
|
adantl |
|
| 32 |
|
zmodfzo |
|
| 33 |
28 31 32
|
syl2anc |
|
| 34 |
15
|
oveq2d |
|
| 35 |
34
|
eleq1d |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
mpbird |
|
| 38 |
|
fvco2 |
|
| 39 |
25 37 38
|
syl2anc |
|
| 40 |
|
simpl1 |
|
| 41 |
11
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
|
cshwidxmod |
|
| 44 |
43
|
fveq2d |
|
| 45 |
40 41 42 44
|
syl3anc |
|
| 46 |
22 39 45
|
3eqtr4rd |
|
| 47 |
|
fvco2 |
|
| 48 |
4 47
|
sylan |
|
| 49 |
10
|
adantr |
|
| 50 |
15
|
eqcomd |
|
| 51 |
50
|
oveq2d |
|
| 52 |
51
|
eleq2d |
|
| 53 |
52
|
biimpa |
|
| 54 |
|
cshwidxmod |
|
| 55 |
49 41 53 54
|
syl3anc |
|
| 56 |
46 48 55
|
3eqtr4d |
|
| 57 |
8 18 56
|
eqfnfvd |
|