Metamath Proof Explorer


Theorem cvgcaule

Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses cvgcaule.1 _jF
cvgcaule.2 _kF
cvgcaule.3 φMZ
cvgcaule.4 φFV
cvgcaule.5 Z=M
cvgcaule.6 φFdom
cvgcaule.7 φX+
Assertion cvgcaule φjZkjFkFkFjX

Proof

Step Hyp Ref Expression
1 cvgcaule.1 _jF
2 cvgcaule.2 _kF
3 cvgcaule.3 φMZ
4 cvgcaule.4 φFV
5 cvgcaule.5 Z=M
6 cvgcaule.6 φFdom
7 cvgcaule.7 φX+
8 1 2 3 4 5 6 7 cvgcau φjZkjFkFkFj<X
9 nfv kX+jZ
10 nfra1 kkjFkFkFj<X
11 9 10 nfan kX+jZkjFkFkFj<X
12 rspa kjFkFkFj<XkjFkFkFj<X
13 12 simpld kjFkFkFj<XkjFk
14 13 adantll X+jZkjFkFkFj<XkjFk
15 13 adantll jZkjFkFkFj<XkjFk
16 5 uzid3 jZjj
17 nfcv _kj
18 2 17 nffv _kFj
19 18 nfel1 kFj
20 nfcv _kabs
21 nfcv _k
22 18 21 18 nfov _kFjFj
23 20 22 nffv _kFjFj
24 nfcv _k<
25 nfcv _kX
26 23 24 25 nfbr kFjFj<X
27 19 26 nfan kFjFjFj<X
28 fveq2 k=jFk=Fj
29 28 eleq1d k=jFkFj
30 28 fvoveq1d k=jFkFj=FjFj
31 30 breq1d k=jFkFj<XFjFj<X
32 29 31 anbi12d k=jFkFkFj<XFjFjFj<X
33 27 32 rspc jjkjFkFkFj<XFjFjFj<X
34 16 33 syl jZkjFkFkFj<XFjFjFj<X
35 34 imp jZkjFkFkFj<XFjFjFj<X
36 35 simpld jZkjFkFkFj<XFj
37 36 adantr jZkjFkFkFj<XkjFj
38 15 37 subcld jZkjFkFkFj<XkjFkFj
39 38 abscld jZkjFkFkFj<XkjFkFj
40 39 adantlll X+jZkjFkFkFj<XkjFkFj
41 simplll X+jZkjFkFkFj<XkjX+
42 41 rpred X+jZkjFkFkFj<XkjX
43 12 adantll X+jZkjFkFkFj<XkjFkFkFj<X
44 43 simprd X+jZkjFkFkFj<XkjFkFj<X
45 40 42 44 ltled X+jZkjFkFkFj<XkjFkFjX
46 14 45 jca X+jZkjFkFkFj<XkjFkFkFjX
47 11 46 ralrimia X+jZkjFkFkFj<XkjFkFkFjX
48 47 ex X+jZkjFkFkFj<XkjFkFkFjX
49 48 reximdva X+jZkjFkFkFj<XjZkjFkFkFjX
50 7 8 49 sylc φjZkjFkFkFjX