Metamath Proof Explorer


Theorem cvmlift2lem7

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
Assertion cvmlift2lem7 φFK=G

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 eqid ιfIICnC|Ff=z01xGzf0=Hx=ιfIICnC|Ff=z01xGzf0=Hx
9 1 2 3 4 5 6 8 cvmlift2lem3 φx01ιfIICnC|Ff=z01xGzf0=HxIICnCFιfIICnC|Ff=z01xGzf0=Hx=z01xGzιfIICnC|Ff=z01xGzf0=Hx0=Hx
10 9 adantrr φx01y01ιfIICnC|Ff=z01xGzf0=HxIICnCFιfIICnC|Ff=z01xGzf0=Hx=z01xGzιfIICnC|Ff=z01xGzf0=Hx0=Hx
11 10 simp2d φx01y01FιfIICnC|Ff=z01xGzf0=Hx=z01xGz
12 11 fveq1d φx01y01FιfIICnC|Ff=z01xGzf0=Hxy=z01xGzy
13 10 simp1d φx01y01ιfIICnC|Ff=z01xGzf0=HxIICnC
14 iiuni 01=II
15 14 1 cnf ιfIICnC|Ff=z01xGzf0=HxIICnCιfIICnC|Ff=z01xGzf0=Hx:01B
16 13 15 syl φx01y01ιfIICnC|Ff=z01xGzf0=Hx:01B
17 simprr φx01y01y01
18 fvco3 ιfIICnC|Ff=z01xGzf0=Hx:01By01FιfIICnC|Ff=z01xGzf0=Hxy=FιfIICnC|Ff=z01xGzf0=Hxy
19 16 17 18 syl2anc φx01y01FιfIICnC|Ff=z01xGzf0=Hxy=FιfIICnC|Ff=z01xGzf0=Hxy
20 oveq2 z=yxGz=xGy
21 eqid z01xGz=z01xGz
22 ovex xGyV
23 20 21 22 fvmpt y01z01xGzy=xGy
24 17 23 syl φx01y01z01xGzy=xGy
25 12 19 24 3eqtr3d φx01y01FιfIICnC|Ff=z01xGzf0=Hxy=xGy
26 25 3impb φx01y01FιfIICnC|Ff=z01xGzf0=Hxy=xGy
27 26 mpoeq3dva φx01,y01FιfIICnC|Ff=z01xGzf0=Hxy=x01,y01xGy
28 16 17 ffvelcdmd φx01y01ιfIICnC|Ff=z01xGzf0=HxyB
29 7 a1i φK=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
30 cvmcn FCCovMapJFCCnJ
31 eqid J=J
32 1 31 cnf FCCnJF:BJ
33 2 30 32 3syl φF:BJ
34 33 feqmptd φF=wBFw
35 fveq2 w=ιfIICnC|Ff=z01xGzf0=HxyFw=FιfIICnC|Ff=z01xGzf0=Hxy
36 28 29 34 35 fmpoco φFK=x01,y01FιfIICnC|Ff=z01xGzf0=Hxy
37 iitop IITop
38 37 37 14 14 txunii 01×01=II×tII
39 38 31 cnf GII×tIICnJG:01×01J
40 ffn G:01×01JGFn01×01
41 3 39 40 3syl φGFn01×01
42 fnov GFn01×01G=x01,y01xGy
43 41 42 sylib φG=x01,y01xGy
44 27 36 43 3eqtr4d φFK=G