Metamath Proof Explorer


Theorem cvmlift3lem8

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
Assertion cvmlift3lem8 φHKCnC

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
12 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φH:YB
13 3 adantr φyYFCCovMapJ
14 eqid J=J
15 2 14 cnf GKCnJG:YJ
16 7 15 syl φG:YJ
17 16 ffvelcdmda φyYGyJ
18 11 14 cvmcov FCCovMapJGyJaJGyaSa
19 13 17 18 syl2anc φyYaJGyaSa
20 n0 SattSa
21 5 ad2antrr φyYGyatSaKN-Locally PConn
22 7 ad2antrr φyYGyatSaGKCnJ
23 simprr φyYGyatSatSa
24 11 cvmsrcl tSaaJ
25 23 24 syl φyYGyatSaaJ
26 cnima GKCnJaJG-1aK
27 22 25 26 syl2anc φyYGyatSaG-1aK
28 simplr φyYGyatSayY
29 simprl φyYGyatSaGya
30 ffn G:YJGFnY
31 elpreima GFnYyG-1ayYGya
32 22 15 30 31 4syl φyYGyatSayG-1ayYGya
33 28 29 32 mpbir2and φyYGyatSayG-1a
34 nlly2i KN-Locally PConn G-1aK yG-1a m𝒫G-1avKyvvmK𝑡mPConn
35 21 27 33 34 syl3anc φyYGyatSam𝒫G-1avKyvvmK𝑡mPConn
36 3 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnFCCovMapJ
37 4 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnKSConn
38 5 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnKN-Locally PConn
39 6 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnOY
40 7 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnGKCnJ
41 8 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnPB
42 9 ad3antrrr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnFP=GO
43 29 adantr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnGya
44 23 adantr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConntSa
45 simprll φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnm𝒫G-1a
46 45 elpwid φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnmG-1a
47 eqid ιbt|Hyb=ιbt|Hyb
48 simprr3 φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnK𝑡mPConn
49 simprlr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnvK
50 simprr2 φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnvm
51 simprr1 φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnyv
52 1 2 36 37 38 39 40 41 42 10 11 43 44 46 47 48 49 50 51 cvmlift3lem7 φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnHKCnPCy
53 52 expr φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnHKCnPCy
54 53 rexlimdvva φyYGyatSam𝒫G-1avKyvvmK𝑡mPConnHKCnPCy
55 35 54 mpd φyYGyatSaHKCnPCy
56 55 expr φyYGyatSaHKCnPCy
57 56 exlimdv φyYGyattSaHKCnPCy
58 20 57 biimtrid φyYGyaSaHKCnPCy
59 58 expimpd φyYGyaSaHKCnPCy
60 59 rexlimdvw φyYaJGyaSaHKCnPCy
61 19 60 mpd φyYHKCnPCy
62 61 ralrimiva φyYHKCnPCy
63 sconntop KSConnKTop
64 4 63 syl φKTop
65 2 toptopon KTopKTopOnY
66 64 65 sylib φKTopOnY
67 cvmtop1 FCCovMapJCTop
68 3 67 syl φCTop
69 1 toptopon CTopCTopOnB
70 68 69 sylib φCTopOnB
71 cncnp KTopOnYCTopOnBHKCnCH:YByYHKCnPCy
72 66 70 71 syl2anc φHKCnCH:YByYHKCnPCy
73 12 62 72 mpbir2and φHKCnC