Metamath Proof Explorer


Theorem cyclnumvtx

Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025)

Ref Expression
Assertion cyclnumvtx 1 F F Cycles G P ran P = F

Proof

Step Hyp Ref Expression
1 iscycl F Cycles G P F Paths G P P 0 = P F
2 pthiswlk F Paths G P F Walks G P
3 eqid Vtx G = Vtx G
4 3 wlkp F Walks G P P : 0 F Vtx G
5 wlkcl F Walks G P F 0
6 elnnnn0c F F 0 1 F
7 frel P : 0 F Vtx G Rel P
8 7 3ad2ant1 P : 0 F Vtx G F P 0 = P F Rel P
9 fz1ssfz0 1 F 0 F
10 fdm P : 0 F Vtx G dom P = 0 F
11 9 10 sseqtrrid P : 0 F Vtx G 1 F dom P
12 11 3ad2ant1 P : 0 F Vtx G F P 0 = P F 1 F dom P
13 8 12 jca P : 0 F Vtx G F P 0 = P F Rel P 1 F dom P
14 10 3ad2ant1 P : 0 F Vtx G F P 0 = P F dom P = 0 F
15 14 difeq1d P : 0 F Vtx G F P 0 = P F dom P 1 F = 0 F 1 F
16 nnnn0 F F 0
17 fz0sn0fz1 F 0 0 F = 0 1 F
18 16 17 syl F 0 F = 0 1 F
19 18 difeq1d F 0 F 1 F = 0 1 F 1 F
20 1e0p1 1 = 0 + 1
21 20 oveq1i 1 F = 0 + 1 F
22 21 ineq2i 0 1 F = 0 0 + 1 F
23 22 a1i F 0 1 F = 0 0 + 1 F
24 elnn0uz F 0 F 0
25 16 24 sylib F F 0
26 fzpreddisj F 0 0 0 + 1 F =
27 25 26 syl F 0 0 + 1 F =
28 23 27 eqtrd F 0 1 F =
29 undif5 0 1 F = 0 1 F 1 F = 0
30 28 29 syl F 0 1 F 1 F = 0
31 19 30 eqtrd F 0 F 1 F = 0
32 31 3ad2ant2 P : 0 F Vtx G F P 0 = P F 0 F 1 F = 0
33 15 32 eqtrd P : 0 F Vtx G F P 0 = P F dom P 1 F = 0
34 33 imaeq2d P : 0 F Vtx G F P 0 = P F P dom P 1 F = P 0
35 ffn P : 0 F Vtx G P Fn 0 F
36 0elfz F 0 0 0 F
37 16 36 syl F 0 0 F
38 35 37 anim12i P : 0 F Vtx G F P Fn 0 F 0 0 F
39 38 3adant3 P : 0 F Vtx G F P 0 = P F P Fn 0 F 0 0 F
40 fnsnfv P Fn 0 F 0 0 F P 0 = P 0
41 39 40 syl P : 0 F Vtx G F P 0 = P F P 0 = P 0
42 34 41 eqtr4d P : 0 F Vtx G F P 0 = P F P dom P 1 F = P 0
43 elfz1end F F 1 F
44 43 biimpi F F 1 F
45 44 3ad2ant2 P : 0 F Vtx G F P 0 = P F F 1 F
46 45 fvresd P : 0 F Vtx G F P 0 = P F P 1 F F = P F
47 ffun P : 0 F Vtx G Fun P
48 47 funresd P : 0 F Vtx G Fun P 1 F
49 48 3ad2ant1 P : 0 F Vtx G F P 0 = P F Fun P 1 F
50 ssdmres 1 F dom P dom P 1 F = 1 F
51 12 50 sylib P : 0 F Vtx G F P 0 = P F dom P 1 F = 1 F
52 45 51 eleqtrrd P : 0 F Vtx G F P 0 = P F F dom P 1 F
53 49 52 jca P : 0 F Vtx G F P 0 = P F Fun P 1 F F dom P 1 F
54 fvelrn Fun P 1 F F dom P 1 F P 1 F F ran P 1 F
55 53 54 syl P : 0 F Vtx G F P 0 = P F P 1 F F ran P 1 F
56 46 55 eqeltrrd P : 0 F Vtx G F P 0 = P F P F ran P 1 F
57 eleq1 P 0 = P F P 0 ran P 1 F P F ran P 1 F
58 57 3ad2ant3 P : 0 F Vtx G F P 0 = P F P 0 ran P 1 F P F ran P 1 F
59 56 58 mpbird P : 0 F Vtx G F P 0 = P F P 0 ran P 1 F
60 59 snssd P : 0 F Vtx G F P 0 = P F P 0 ran P 1 F
61 42 60 eqsstrd P : 0 F Vtx G F P 0 = P F P dom P 1 F ran P 1 F
62 13 61 jca P : 0 F Vtx G F P 0 = P F Rel P 1 F dom P P dom P 1 F ran P 1 F
63 62 3exp P : 0 F Vtx G F P 0 = P F Rel P 1 F dom P P dom P 1 F ran P 1 F
64 63 com3l F P 0 = P F P : 0 F Vtx G Rel P 1 F dom P P dom P 1 F ran P 1 F
65 6 64 sylbir F 0 1 F P 0 = P F P : 0 F Vtx G Rel P 1 F dom P P dom P 1 F ran P 1 F
66 65 expcom 1 F F 0 P 0 = P F P : 0 F Vtx G Rel P 1 F dom P P dom P 1 F ran P 1 F
67 66 com14 P : 0 F Vtx G F 0 P 0 = P F 1 F Rel P 1 F dom P P dom P 1 F ran P 1 F
68 4 5 67 sylc F Walks G P P 0 = P F 1 F Rel P 1 F dom P P dom P 1 F ran P 1 F
69 2 68 syl F Paths G P P 0 = P F 1 F Rel P 1 F dom P P dom P 1 F ran P 1 F
70 69 imp F Paths G P P 0 = P F 1 F Rel P 1 F dom P P dom P 1 F ran P 1 F
71 1 70 sylbi F Cycles G P 1 F Rel P 1 F dom P P dom P 1 F ran P 1 F
72 71 impcom 1 F F Cycles G P Rel P 1 F dom P P dom P 1 F ran P 1 F
73 imadifssran Rel P 1 F dom P P dom P 1 F ran P 1 F ran P = ran P 1 F
74 73 imp Rel P 1 F dom P P dom P 1 F ran P 1 F ran P = ran P 1 F
75 74 fveq2d Rel P 1 F dom P P dom P 1 F ran P 1 F ran P = ran P 1 F
76 72 75 syl 1 F F Cycles G P ran P = ran P 1 F
77 cyclispth F Cycles G P F Paths G P
78 pthdifv F Paths G P P 1 F : 1 F 1-1 Vtx G
79 47 adantl F 0 P : 0 F Vtx G Fun P
80 fzfid F 0 0 F Fin
81 fnfi P Fn 0 F 0 F Fin P Fin
82 35 80 81 syl2anr F 0 P : 0 F Vtx G P Fin
83 1eluzge0 1 0
84 83 a1i F 0 1 0
85 fzss1 1 0 1 F 0 F
86 84 85 syl F 0 1 F 0 F
87 86 adantr F 0 P : 0 F Vtx G 1 F 0 F
88 10 adantl F 0 P : 0 F Vtx G dom P = 0 F
89 87 88 sseqtrrd F 0 P : 0 F Vtx G 1 F dom P
90 79 82 89 3jca F 0 P : 0 F Vtx G Fun P P Fin 1 F dom P
91 90 ex F 0 P : 0 F Vtx G Fun P P Fin 1 F dom P
92 5 4 91 sylc F Walks G P Fun P P Fin 1 F dom P
93 2 92 syl F Paths G P Fun P P Fin 1 F dom P
94 93 adantr F Paths G P P 1 F : 1 F 1-1 Vtx G Fun P P Fin 1 F dom P
95 hashres Fun P P Fin 1 F dom P P 1 F = 1 F
96 94 95 syl F Paths G P P 1 F : 1 F 1-1 Vtx G P 1 F = 1 F
97 ovexd F Paths G P P 1 F : 1 F 1-1 Vtx G 1 F V
98 hashf1rn 1 F V P 1 F : 1 F 1-1 Vtx G P 1 F = ran P 1 F
99 97 98 sylancom F Paths G P P 1 F : 1 F 1-1 Vtx G P 1 F = ran P 1 F
100 2 5 syl F Paths G P F 0
101 hashfz1 F 0 1 F = F
102 100 101 syl F Paths G P 1 F = F
103 102 adantr F Paths G P P 1 F : 1 F 1-1 Vtx G 1 F = F
104 96 99 103 3eqtr3d F Paths G P P 1 F : 1 F 1-1 Vtx G ran P 1 F = F
105 104 ex F Paths G P P 1 F : 1 F 1-1 Vtx G ran P 1 F = F
106 78 105 mpd F Paths G P ran P 1 F = F
107 77 106 syl F Cycles G P ran P 1 F = F
108 107 adantl 1 F F Cycles G P ran P 1 F = F
109 76 108 eqtrd 1 F F Cycles G P ran P = F