Step |
Hyp |
Ref |
Expression |
1 |
|
iscycl |
|- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
2 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
3
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
5 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
6 |
|
elnnnn0c |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) |
7 |
|
frel |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) |
8 |
7
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Rel P ) |
9 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
10 |
|
fdm |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
11 |
9 10
|
sseqtrrid |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
12 |
11
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
13 |
8 12
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
14 |
10
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
15 |
14
|
difeq1d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) ) |
16 |
|
nnnn0 |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. NN0 ) |
17 |
|
fz0sn0fz1 |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
18 |
16 17
|
syl |
|- ( ( # ` F ) e. NN -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
19 |
18
|
difeq1d |
|- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) ) |
20 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
21 |
20
|
oveq1i |
|- ( 1 ... ( # ` F ) ) = ( ( 0 + 1 ) ... ( # ` F ) ) |
22 |
21
|
ineq2i |
|- ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) |
23 |
22
|
a1i |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) ) |
24 |
|
elnn0uz |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
25 |
16 24
|
sylib |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
26 |
|
fzpreddisj |
|- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
27 |
25 26
|
syl |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
28 |
23 27
|
eqtrd |
|- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) ) |
29 |
|
undif5 |
|- ( ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
30 |
28 29
|
syl |
|- ( ( # ` F ) e. NN -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
31 |
19 30
|
eqtrd |
|- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
32 |
31
|
3ad2ant2 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
33 |
15 32
|
eqtrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
34 |
33
|
imaeq2d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = ( P " { 0 } ) ) |
35 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
36 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
37 |
16 36
|
syl |
|- ( ( # ` F ) e. NN -> 0 e. ( 0 ... ( # ` F ) ) ) |
38 |
35 37
|
anim12i |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
39 |
38
|
3adant3 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
40 |
|
fnsnfv |
|- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
41 |
39 40
|
syl |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
42 |
34 41
|
eqtr4d |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = { ( P ` 0 ) } ) |
43 |
|
elfz1end |
|- ( ( # ` F ) e. NN <-> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
44 |
43
|
biimpi |
|- ( ( # ` F ) e. NN -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
45 |
44
|
3ad2ant2 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
46 |
45
|
fvresd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) = ( P ` ( # ` F ) ) ) |
47 |
|
ffun |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun P ) |
48 |
47
|
funresd |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
50 |
|
ssdmres |
|- ( ( 1 ... ( # ` F ) ) C_ dom P <-> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
51 |
12 50
|
sylib |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
52 |
45 51
|
eleqtrrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) |
53 |
49 52
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
54 |
|
fvelrn |
|- ( ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
55 |
53 54
|
syl |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
56 |
46 55
|
eqeltrrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
57 |
|
eleq1 |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
58 |
57
|
3ad2ant3 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
59 |
56 58
|
mpbird |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
60 |
59
|
snssd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
61 |
42 60
|
eqsstrd |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
62 |
13 61
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
63 |
62
|
3exp |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
64 |
63
|
com3l |
|- ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
65 |
6 64
|
sylbir |
|- ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
66 |
65
|
expcom |
|- ( 1 <_ ( # ` F ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
67 |
66
|
com14 |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
68 |
4 5 67
|
sylc |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
69 |
2 68
|
syl |
|- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
70 |
69
|
imp |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
71 |
1 70
|
sylbi |
|- ( F ( Cycles ` G ) P -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
72 |
71
|
impcom |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
73 |
|
imadifssran |
|- ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
74 |
73
|
imp |
|- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
75 |
74
|
fveq2d |
|- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
76 |
72 75
|
syl |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
77 |
|
cyclispth |
|- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
78 |
|
pthdifv |
|- ( F ( Paths ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
79 |
47
|
adantl |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> Fun P ) |
80 |
|
fzfid |
|- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) e. Fin ) |
81 |
|
fnfi |
|- ( ( P Fn ( 0 ... ( # ` F ) ) /\ ( 0 ... ( # ` F ) ) e. Fin ) -> P e. Fin ) |
82 |
35 80 81
|
syl2anr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> P e. Fin ) |
83 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
84 |
83
|
a1i |
|- ( ( # ` F ) e. NN0 -> 1 e. ( ZZ>= ` 0 ) ) |
85 |
|
fzss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
86 |
84 85
|
syl |
|- ( ( # ` F ) e. NN0 -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
87 |
86
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
88 |
10
|
adantl |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
89 |
87 88
|
sseqtrrd |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
90 |
79 82 89
|
3jca |
|- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
91 |
90
|
ex |
|- ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) ) |
92 |
5 4 91
|
sylc |
|- ( F ( Walks ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
93 |
2 92
|
syl |
|- ( F ( Paths ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
94 |
93
|
adantr |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
95 |
|
hashres |
|- ( ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
96 |
94 95
|
syl |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
97 |
|
ovexd |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) e. _V ) |
98 |
|
hashf1rn |
|- ( ( ( 1 ... ( # ` F ) ) e. _V /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
99 |
97 98
|
sylancom |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
100 |
2 5
|
syl |
|- ( F ( Paths ` G ) P -> ( # ` F ) e. NN0 ) |
101 |
|
hashfz1 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
102 |
100 101
|
syl |
|- ( F ( Paths ` G ) P -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
103 |
102
|
adantr |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
104 |
96 99 103
|
3eqtr3d |
|- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
105 |
104
|
ex |
|- ( F ( Paths ` G ) P -> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) ) |
106 |
78 105
|
mpd |
|- ( F ( Paths ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
107 |
77 106
|
syl |
|- ( F ( Cycles ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
108 |
107
|
adantl |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
109 |
76 108
|
eqtrd |
|- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` F ) ) |