Metamath Proof Explorer


Theorem cycpmfv3

Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C=toCycD
tocycfv.d φDV
tocycfv.w φWWordD
tocycfv.1 φW:domW1-1D
cycpmfv3.1 φXD
cycpmfv3.2 φ¬XranW
Assertion cycpmfv3 φCWX=X

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 tocycfv.d φDV
3 tocycfv.w φWWordD
4 tocycfv.1 φW:domW1-1D
5 cycpmfv3.1 φXD
6 cycpmfv3.2 φ¬XranW
7 1 2 3 4 tocycfv φCW=IDranWWcyclShift1W-1
8 7 fveq1d φCWX=IDranWWcyclShift1W-1X
9 f1oi IDranW:DranW1-1 ontoDranW
10 f1ofn IDranW:DranW1-1 ontoDranWIDranWFnDranW
11 9 10 mp1i φIDranWFnDranW
12 1zzd φ1
13 cshwf WWordD1WcyclShift1:0..^WD
14 3 12 13 syl2anc φWcyclShift1:0..^WD
15 14 ffnd φWcyclShift1Fn0..^W
16 df-f1 W:domW1-1DW:domWDFunW-1
17 4 16 sylib φW:domWDFunW-1
18 17 simprd φFunW-1
19 18 funfnd φW-1FndomW-1
20 df-rn ranW=domW-1
21 20 fneq2i W-1FnranWW-1FndomW-1
22 19 21 sylibr φW-1FnranW
23 dfdm4 domW=ranW-1
24 23 eqimss2i ranW-1domW
25 wrdfn WWordDWFn0..^W
26 3 25 syl φWFn0..^W
27 26 fndmd φdomW=0..^W
28 24 27 sseqtrid φranW-10..^W
29 fnco WcyclShift1Fn0..^WW-1FnranWranW-10..^WWcyclShift1W-1FnranW
30 15 22 28 29 syl3anc φWcyclShift1W-1FnranW
31 disjdifr DranWranW=
32 31 a1i φDranWranW=
33 5 6 eldifd φXDranW
34 fvun1 IDranWFnDranWWcyclShift1W-1FnranWDranWranW=XDranWIDranWWcyclShift1W-1X=IDranWX
35 11 30 32 33 34 syl112anc φIDranWWcyclShift1W-1X=IDranWX
36 fvresi XDranWIDranWX=X
37 33 36 syl φIDranWX=X
38 8 35 37 3eqtrd φCWX=X