Metamath Proof Explorer


Theorem deg1ldg

Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
deg1nn0cl.b B=BaseP
deg1ldg.y Y=0R
deg1ldg.a A=coe1F
Assertion deg1ldg RRingFBF0˙ADFY

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 deg1nn0cl.b B=BaseP
5 deg1ldg.y Y=0R
6 deg1ldg.a A=coe1F
7 1 deg1fval D=1𝑜mDegR
8 eqid 1𝑜mPolyR=1𝑜mPolyR
9 eqid PwSer1R=PwSer1R
10 2 9 4 ply1bas B=Base1𝑜mPolyR
11 psr1baslem 01𝑜=c01𝑜|c-1Fin
12 tdeglem2 a01𝑜a=a01𝑜flda
13 8 2 3 ply1mpl0 0˙=01𝑜mPolyR
14 7 8 10 5 11 12 13 mdegldg RRingFBF0˙b01𝑜FbYa01𝑜ab=DF
15 6 fvcoe1 FBb01𝑜Fb=Ab
16 15 3ad2antl2 RRingFBF0˙b01𝑜Fb=Ab
17 fveq1 a=ba=b
18 eqid a01𝑜a=a01𝑜a
19 fvex bV
20 17 18 19 fvmpt b01𝑜a01𝑜ab=b
21 20 fveq2d b01𝑜Aa01𝑜ab=Ab
22 21 adantl RRingFBF0˙b01𝑜Aa01𝑜ab=Ab
23 16 22 eqtr4d RRingFBF0˙b01𝑜Fb=Aa01𝑜ab
24 23 neeq1d RRingFBF0˙b01𝑜FbYAa01𝑜abY
25 24 anbi1d RRingFBF0˙b01𝑜FbYa01𝑜ab=DFAa01𝑜abYa01𝑜ab=DF
26 25 biancomd RRingFBF0˙b01𝑜FbYa01𝑜ab=DFa01𝑜ab=DFAa01𝑜abY
27 26 rexbidva RRingFBF0˙b01𝑜FbYa01𝑜ab=DFb01𝑜a01𝑜ab=DFAa01𝑜abY
28 df1o2 1𝑜=
29 nn0ex 0V
30 0ex V
31 28 29 30 18 mapsnf1o2 a01𝑜a:01𝑜1-1 onto0
32 f1ofo a01𝑜a:01𝑜1-1 onto0a01𝑜a:01𝑜onto0
33 eqeq1 a01𝑜ab=da01𝑜ab=DFd=DF
34 fveq2 a01𝑜ab=dAa01𝑜ab=Ad
35 34 neeq1d a01𝑜ab=dAa01𝑜abYAdY
36 33 35 anbi12d a01𝑜ab=da01𝑜ab=DFAa01𝑜abYd=DFAdY
37 36 cbvexfo a01𝑜a:01𝑜onto0b01𝑜a01𝑜ab=DFAa01𝑜abYd0d=DFAdY
38 31 32 37 mp2b b01𝑜a01𝑜ab=DFAa01𝑜abYd0d=DFAdY
39 27 38 bitrdi RRingFBF0˙b01𝑜FbYa01𝑜ab=DFd0d=DFAdY
40 1 2 3 4 deg1nn0cl RRingFBF0˙DF0
41 fveq2 d=DFAd=ADF
42 41 neeq1d d=DFAdYADFY
43 42 ceqsrexv DF0d0d=DFAdYADFY
44 40 43 syl RRingFBF0˙d0d=DFAdYADFY
45 39 44 bitrd RRingFBF0˙b01𝑜FbYa01𝑜ab=DFADFY
46 14 45 mpbid RRingFBF0˙ADFY