Metamath Proof Explorer


Theorem dffi2

Description: The set of finite intersections is the smallest set that contains A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion dffi2 AVfiA=z|Azxzyzxyz

Proof

Step Hyp Ref Expression
1 elex AVAV
2 vex tV
3 elfi tVAVtfiAx𝒫AFint=x
4 2 3 mpan AVtfiAx𝒫AFint=x
5 4 biimpd AVtfiAx𝒫AFint=x
6 df-rex x𝒫AFint=xxx𝒫AFint=x
7 fiint xzyzxyzxxzxxFinxz
8 elinel1 x𝒫AFinx𝒫A
9 8 elpwid x𝒫AFinxA
10 9 3ad2ant2 Azx𝒫AFint=xxA
11 simp1 Azx𝒫AFint=xAz
12 10 11 sstrd Azx𝒫AFint=xxz
13 eqvisset t=xxV
14 intex xxV
15 13 14 sylibr t=xx
16 15 3ad2ant3 Azx𝒫AFint=xx
17 elinel2 x𝒫AFinxFin
18 17 3ad2ant2 Azx𝒫AFint=xxFin
19 12 16 18 3jca Azx𝒫AFint=xxzxxFin
20 19 3expib Azx𝒫AFint=xxzxxFin
21 pm2.27 xzxxFinxzxxFinxzxz
22 20 21 syl6 Azx𝒫AFint=xxzxxFinxzxz
23 eleq1 t=xtzxz
24 23 biimprd t=xxztz
25 24 adantl x𝒫AFint=xxztz
26 25 a1i Azx𝒫AFint=xxztz
27 22 26 syldd Azx𝒫AFint=xxzxxFinxztz
28 27 com23 AzxzxxFinxzx𝒫AFint=xtz
29 28 alimdv AzxxzxxFinxzxx𝒫AFint=xtz
30 7 29 biimtrid Azxzyzxyzxx𝒫AFint=xtz
31 30 imp Azxzyzxyzxx𝒫AFint=xtz
32 19.23v xx𝒫AFint=xtzxx𝒫AFint=xtz
33 31 32 sylib Azxzyzxyzxx𝒫AFint=xtz
34 6 33 biimtrid Azxzyzxyzx𝒫AFint=xtz
35 5 34 sylan9 AVAzxzyzxyztfiAtz
36 35 ssrdv AVAzxzyzxyzfiAz
37 36 ex AVAzxzyzxyzfiAz
38 37 alrimiv AVzAzxzyzxyzfiAz
39 ssintab fiAz|AzxzyzxyzzAzxzyzxyzfiAz
40 38 39 sylibr AVfiAz|Azxzyzxyz
41 ssfii AVAfiA
42 fiin xfiAyfiAxyfiA
43 42 rgen2 xfiAyfiAxyfiA
44 fvex fiAV
45 sseq2 z=fiAAzAfiA
46 eleq2 z=fiAxyzxyfiA
47 46 raleqbi1dv z=fiAyzxyzyfiAxyfiA
48 47 raleqbi1dv z=fiAxzyzxyzxfiAyfiAxyfiA
49 45 48 anbi12d z=fiAAzxzyzxyzAfiAxfiAyfiAxyfiA
50 44 49 elab fiAz|AzxzyzxyzAfiAxfiAyfiAxyfiA
51 41 43 50 sylanblrc AVfiAz|Azxzyzxyz
52 intss1 fiAz|Azxzyzxyzz|AzxzyzxyzfiA
53 51 52 syl AVz|AzxzyzxyzfiA
54 40 53 eqssd AVfiA=z|Azxzyzxyz
55 1 54 syl AVfiA=z|Azxzyzxyz