Description: The set of finite intersections is the smallest set that contains A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dffi2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | vex | |
|
3 | elfi | |
|
4 | 2 3 | mpan | |
5 | 4 | biimpd | |
6 | df-rex | |
|
7 | fiint | |
|
8 | elinel1 | |
|
9 | 8 | elpwid | |
10 | 9 | 3ad2ant2 | |
11 | simp1 | |
|
12 | 10 11 | sstrd | |
13 | eqvisset | |
|
14 | intex | |
|
15 | 13 14 | sylibr | |
16 | 15 | 3ad2ant3 | |
17 | elinel2 | |
|
18 | 17 | 3ad2ant2 | |
19 | 12 16 18 | 3jca | |
20 | 19 | 3expib | |
21 | pm2.27 | |
|
22 | 20 21 | syl6 | |
23 | eleq1 | |
|
24 | 23 | biimprd | |
25 | 24 | adantl | |
26 | 25 | a1i | |
27 | 22 26 | syldd | |
28 | 27 | com23 | |
29 | 28 | alimdv | |
30 | 7 29 | biimtrid | |
31 | 30 | imp | |
32 | 19.23v | |
|
33 | 31 32 | sylib | |
34 | 6 33 | biimtrid | |
35 | 5 34 | sylan9 | |
36 | 35 | ssrdv | |
37 | 36 | ex | |
38 | 37 | alrimiv | |
39 | ssintab | |
|
40 | 38 39 | sylibr | |
41 | ssfii | |
|
42 | fiin | |
|
43 | 42 | rgen2 | |
44 | fvex | |
|
45 | sseq2 | |
|
46 | eleq2 | |
|
47 | 46 | raleqbi1dv | |
48 | 47 | raleqbi1dv | |
49 | 45 48 | anbi12d | |
50 | 44 49 | elab | |
51 | 41 43 50 | sylanblrc | |
52 | intss1 | |
|
53 | 51 52 | syl | |
54 | 40 53 | eqssd | |
55 | 1 54 | syl | |