Step |
Hyp |
Ref |
Expression |
1 |
|
dfufd2.b |
|
2 |
|
dfufd2.0 |
|
3 |
|
dfufd2.u |
|
4 |
|
dfufd2.p |
|
5 |
|
dfufd2.m |
|
6 |
|
id |
|
7 |
6
|
ufdidom |
|
8 |
|
simpl |
|
9 |
|
simpr |
|
10 |
9
|
eldifad |
|
11 |
10
|
eldifad |
|
12 |
10
|
eldifbd |
|
13 |
|
eldifsni |
|
14 |
13
|
adantl |
|
15 |
1 2 3 4 5 8 11 12 14
|
1arithufd |
|
16 |
15
|
ralrimiva |
|
17 |
7 16
|
jca |
|
18 |
|
simpl |
|
19 |
|
id |
|
20 |
19
|
idomringd |
|
21 |
20
|
ad2antrr |
|
22 |
|
simpr |
|
23 |
22
|
eldifad |
|
24 |
|
prmidlidl |
|
25 |
21 23 24
|
syl2anc |
|
26 |
|
eqid |
|
27 |
1 26
|
lidlss |
|
28 |
25 27
|
syl |
|
29 |
28
|
sselda |
|
30 |
|
simpr |
|
31 |
|
simplr |
|
32 |
21
|
ad2antrr |
|
33 |
25
|
ad2antrr |
|
34 |
1 3 30 31 32 33
|
lidlunitel |
|
35 |
|
eqid |
|
36 |
1 35
|
prmidlnr |
|
37 |
21 23 36
|
syl2anc |
|
38 |
37
|
ad2antrr |
|
39 |
38
|
neneqd |
|
40 |
34 39
|
pm2.65da |
|
41 |
29 40
|
eldifd |
|
42 |
|
simpllr |
|
43 |
41 42
|
eldifsnd |
|
44 |
|
eqeq1 |
|
45 |
44
|
rexbidv |
|
46 |
45
|
adantl |
|
47 |
43 46
|
rspcdv |
|
48 |
|
simp-5l |
|
49 |
23
|
ad3antrrr |
|
50 |
|
simplr |
|
51 |
|
simpr |
|
52 |
|
simpllr |
|
53 |
51 52
|
eqeltrrd |
|
54 |
42
|
ad2antrr |
|
55 |
51 54
|
eqnetrrd |
|
56 |
1 2 3 4 5 48 49 50 53 55
|
dfufd2lem |
|
57 |
56
|
rexlimdva2 |
|
58 |
47 57
|
syld |
|
59 |
58
|
imp |
|
60 |
59
|
an52ds |
|
61 |
20
|
ad2antrr |
|
62 |
|
simpr |
|
63 |
62
|
eldifad |
|
64 |
61 63 24
|
syl2anc |
|
65 |
|
eldifsni |
|
66 |
65
|
adantl |
|
67 |
26 2
|
lidlnz |
|
68 |
61 64 66 67
|
syl3anc |
|
69 |
60 68
|
r19.29a |
|
70 |
69
|
ralrimiva |
|
71 |
|
eqid |
|
72 |
71 4 2
|
isufd |
|
73 |
18 70 72
|
sylanbrc |
|
74 |
17 73
|
impbii |
|