| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfufd2.b |
|
| 2 |
|
dfufd2.0 |
|
| 3 |
|
dfufd2.u |
|
| 4 |
|
dfufd2.p |
|
| 5 |
|
dfufd2.m |
|
| 6 |
|
id |
|
| 7 |
6
|
ufdidom |
|
| 8 |
|
simpl |
|
| 9 |
|
simpr |
|
| 10 |
9
|
eldifad |
|
| 11 |
10
|
eldifad |
|
| 12 |
10
|
eldifbd |
|
| 13 |
|
eldifsni |
|
| 14 |
13
|
adantl |
|
| 15 |
1 2 3 4 5 8 11 12 14
|
1arithufd |
|
| 16 |
15
|
ralrimiva |
|
| 17 |
7 16
|
jca |
|
| 18 |
|
simpl |
|
| 19 |
|
id |
|
| 20 |
19
|
idomringd |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
eldifad |
|
| 24 |
|
prmidlidl |
|
| 25 |
21 23 24
|
syl2anc |
|
| 26 |
|
eqid |
|
| 27 |
1 26
|
lidlss |
|
| 28 |
25 27
|
syl |
|
| 29 |
28
|
sselda |
|
| 30 |
|
simpr |
|
| 31 |
|
simplr |
|
| 32 |
21
|
ad2antrr |
|
| 33 |
25
|
ad2antrr |
|
| 34 |
1 3 30 31 32 33
|
lidlunitel |
|
| 35 |
|
eqid |
|
| 36 |
1 35
|
prmidlnr |
|
| 37 |
21 23 36
|
syl2anc |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
38
|
neneqd |
|
| 40 |
34 39
|
pm2.65da |
|
| 41 |
29 40
|
eldifd |
|
| 42 |
|
simpllr |
|
| 43 |
41 42
|
eldifsnd |
|
| 44 |
|
eqeq1 |
|
| 45 |
44
|
rexbidv |
|
| 46 |
45
|
adantl |
|
| 47 |
43 46
|
rspcdv |
|
| 48 |
|
simp-5l |
|
| 49 |
23
|
ad3antrrr |
|
| 50 |
|
simplr |
|
| 51 |
|
simpr |
|
| 52 |
|
simpllr |
|
| 53 |
51 52
|
eqeltrrd |
|
| 54 |
42
|
ad2antrr |
|
| 55 |
51 54
|
eqnetrrd |
|
| 56 |
1 2 3 4 5 48 49 50 53 55
|
dfufd2lem |
|
| 57 |
56
|
rexlimdva2 |
|
| 58 |
47 57
|
syld |
|
| 59 |
58
|
imp |
|
| 60 |
59
|
an52ds |
|
| 61 |
20
|
ad2antrr |
|
| 62 |
|
simpr |
|
| 63 |
62
|
eldifad |
|
| 64 |
61 63 24
|
syl2anc |
|
| 65 |
|
eldifsni |
|
| 66 |
65
|
adantl |
|
| 67 |
26 2
|
lidlnz |
|
| 68 |
61 64 66 67
|
syl3anc |
|
| 69 |
60 68
|
r19.29a |
|
| 70 |
69
|
ralrimiva |
|
| 71 |
|
eqid |
|
| 72 |
71 4 2
|
isufd |
|
| 73 |
18 70 72
|
sylanbrc |
|
| 74 |
17 73
|
impbii |
|