Metamath Proof Explorer


Theorem dia0

Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses dia0.b B=BaseK
dia0.z 0˙=0.K
dia0.h H=LHypK
dia0.i I=DIsoAKW
Assertion dia0 KHLWHI0˙=IB

Proof

Step Hyp Ref Expression
1 dia0.b B=BaseK
2 dia0.z 0˙=0.K
3 dia0.h H=LHypK
4 dia0.i I=DIsoAKW
5 id KHLWHKHLWH
6 hlatl KHLKAtLat
7 1 2 atl0cl KAtLat0˙B
8 6 7 syl KHL0˙B
9 8 adantr KHLWH0˙B
10 1 3 lhpbase WHWB
11 eqid K=K
12 1 11 2 atl0le KAtLatWB0˙KW
13 6 10 12 syl2an KHLWH0˙KW
14 eqid LTrnKW=LTrnKW
15 eqid trLKW=trLKW
16 1 11 3 14 15 4 diaval KHLWH0˙B0˙KWI0˙=fLTrnKW|trLKWfK0˙
17 5 9 13 16 syl12anc KHLWHI0˙=fLTrnKW|trLKWfK0˙
18 6 ad2antrr KHLWHfLTrnKWKAtLat
19 1 3 14 15 trlcl KHLWHfLTrnKWtrLKWfB
20 1 11 2 atlle0 KAtLattrLKWfBtrLKWfK0˙trLKWf=0˙
21 18 19 20 syl2anc KHLWHfLTrnKWtrLKWfK0˙trLKWf=0˙
22 1 2 3 14 15 trlid0b KHLWHfLTrnKWf=IBtrLKWf=0˙
23 21 22 bitr4d KHLWHfLTrnKWtrLKWfK0˙f=IB
24 23 rabbidva KHLWHfLTrnKW|trLKWfK0˙=fLTrnKW|f=IB
25 1 3 14 idltrn KHLWHIBLTrnKW
26 rabsn IBLTrnKWfLTrnKW|f=IB=IB
27 25 26 syl KHLWHfLTrnKW|f=IB=IB
28 17 24 27 3eqtrd KHLWHI0˙=IB