Metamath Proof Explorer


Theorem dia2dimlem10

Description: Lemma for dia2dim . Convert membership in closed subspace ( I( U .\/ V ) ) to a lattice ordering. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem10.l ˙=K
dia2dimlem10.j ˙=joinK
dia2dimlem10.a A=AtomsK
dia2dimlem10.h H=LHypK
dia2dimlem10.t T=LTrnKW
dia2dimlem10.r R=trLKW
dia2dimlem10.y Y=DVecAKW
dia2dimlem10.s S=LSubSpY
dia2dimlem10.n N=LSpanY
dia2dimlem10.i I=DIsoAKW
dia2dimlem10.k φKHLWH
dia2dimlem10.u φUAU˙W
dia2dimlem10.v φVAV˙W
dia2dimlem10.f φFT
dia2dimlem10.fe φFIU˙V
Assertion dia2dimlem10 φRF˙U˙V

Proof

Step Hyp Ref Expression
1 dia2dimlem10.l ˙=K
2 dia2dimlem10.j ˙=joinK
3 dia2dimlem10.a A=AtomsK
4 dia2dimlem10.h H=LHypK
5 dia2dimlem10.t T=LTrnKW
6 dia2dimlem10.r R=trLKW
7 dia2dimlem10.y Y=DVecAKW
8 dia2dimlem10.s S=LSubSpY
9 dia2dimlem10.n N=LSpanY
10 dia2dimlem10.i I=DIsoAKW
11 dia2dimlem10.k φKHLWH
12 dia2dimlem10.u φUAU˙W
13 dia2dimlem10.v φVAV˙W
14 dia2dimlem10.f φFT
15 dia2dimlem10.fe φFIU˙V
16 4 5 6 7 10 9 dia1dim2 KHLWHFTIRF=NF
17 11 14 16 syl2anc φIRF=NF
18 4 7 dvalvec KHLWHYLVec
19 lveclmod YLVecYLMod
20 11 18 19 3syl φYLMod
21 11 simpld φKHL
22 12 simpld φUA
23 13 simpld φVA
24 eqid BaseK=BaseK
25 24 2 3 hlatjcl KHLUAVAU˙VBaseK
26 21 22 23 25 syl3anc φU˙VBaseK
27 12 simprd φU˙W
28 13 simprd φV˙W
29 21 hllatd φKLat
30 24 3 atbase UAUBaseK
31 22 30 syl φUBaseK
32 24 3 atbase VAVBaseK
33 23 32 syl φVBaseK
34 11 simprd φWH
35 24 4 lhpbase WHWBaseK
36 34 35 syl φWBaseK
37 24 1 2 latjle12 KLatUBaseKVBaseKWBaseKU˙WV˙WU˙V˙W
38 29 31 33 36 37 syl13anc φU˙WV˙WU˙V˙W
39 27 28 38 mpbi2and φU˙V˙W
40 24 1 4 7 10 8 dialss KHLWHU˙VBaseKU˙V˙WIU˙VS
41 11 26 39 40 syl12anc φIU˙VS
42 8 9 20 41 15 lspsnel5a φNFIU˙V
43 17 42 eqsstrd φIRFIU˙V
44 24 4 5 6 trlcl KHLWHFTRFBaseK
45 11 14 44 syl2anc φRFBaseK
46 1 4 5 6 trlle KHLWHFTRF˙W
47 11 14 46 syl2anc φRF˙W
48 24 1 4 10 diaord KHLWHRFBaseKRF˙WU˙VBaseKU˙V˙WIRFIU˙VRF˙U˙V
49 11 45 47 26 39 48 syl122anc φIRFIU˙VRF˙U˙V
50 43 49 mpbid φRF˙U˙V