Description: Lemma for dia2dim . Convert membership in closed subspace ( I( U .\/ V ) ) to a lattice ordering. (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem10.l | |
|
dia2dimlem10.j | |
||
dia2dimlem10.a | |
||
dia2dimlem10.h | |
||
dia2dimlem10.t | |
||
dia2dimlem10.r | |
||
dia2dimlem10.y | |
||
dia2dimlem10.s | |
||
dia2dimlem10.n | |
||
dia2dimlem10.i | |
||
dia2dimlem10.k | |
||
dia2dimlem10.u | |
||
dia2dimlem10.v | |
||
dia2dimlem10.f | |
||
dia2dimlem10.fe | |
||
Assertion | dia2dimlem10 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem10.l | |
|
2 | dia2dimlem10.j | |
|
3 | dia2dimlem10.a | |
|
4 | dia2dimlem10.h | |
|
5 | dia2dimlem10.t | |
|
6 | dia2dimlem10.r | |
|
7 | dia2dimlem10.y | |
|
8 | dia2dimlem10.s | |
|
9 | dia2dimlem10.n | |
|
10 | dia2dimlem10.i | |
|
11 | dia2dimlem10.k | |
|
12 | dia2dimlem10.u | |
|
13 | dia2dimlem10.v | |
|
14 | dia2dimlem10.f | |
|
15 | dia2dimlem10.fe | |
|
16 | 4 5 6 7 10 9 | dia1dim2 | |
17 | 11 14 16 | syl2anc | |
18 | 4 7 | dvalvec | |
19 | lveclmod | |
|
20 | 11 18 19 | 3syl | |
21 | 11 | simpld | |
22 | 12 | simpld | |
23 | 13 | simpld | |
24 | eqid | |
|
25 | 24 2 3 | hlatjcl | |
26 | 21 22 23 25 | syl3anc | |
27 | 12 | simprd | |
28 | 13 | simprd | |
29 | 21 | hllatd | |
30 | 24 3 | atbase | |
31 | 22 30 | syl | |
32 | 24 3 | atbase | |
33 | 23 32 | syl | |
34 | 11 | simprd | |
35 | 24 4 | lhpbase | |
36 | 34 35 | syl | |
37 | 24 1 2 | latjle12 | |
38 | 29 31 33 36 37 | syl13anc | |
39 | 27 28 38 | mpbi2and | |
40 | 24 1 4 7 10 8 | dialss | |
41 | 11 26 39 40 | syl12anc | |
42 | 8 9 20 41 15 | lspsnel5a | |
43 | 17 42 | eqsstrd | |
44 | 24 4 5 6 | trlcl | |
45 | 11 14 44 | syl2anc | |
46 | 1 4 5 6 | trlle | |
47 | 11 14 46 | syl2anc | |
48 | 24 1 4 10 | diaord | |
49 | 11 45 47 26 39 48 | syl122anc | |
50 | 43 49 | mpbid | |