Metamath Proof Explorer


Theorem dia2dimlem10

Description: Lemma for dia2dim . Convert membership in closed subspace ( I( U .\/ V ) ) to a lattice ordering. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem10.l ˙ = K
dia2dimlem10.j ˙ = join K
dia2dimlem10.a A = Atoms K
dia2dimlem10.h H = LHyp K
dia2dimlem10.t T = LTrn K W
dia2dimlem10.r R = trL K W
dia2dimlem10.y Y = DVecA K W
dia2dimlem10.s S = LSubSp Y
dia2dimlem10.n N = LSpan Y
dia2dimlem10.i I = DIsoA K W
dia2dimlem10.k φ K HL W H
dia2dimlem10.u φ U A U ˙ W
dia2dimlem10.v φ V A V ˙ W
dia2dimlem10.f φ F T
dia2dimlem10.fe φ F I U ˙ V
Assertion dia2dimlem10 φ R F ˙ U ˙ V

Proof

Step Hyp Ref Expression
1 dia2dimlem10.l ˙ = K
2 dia2dimlem10.j ˙ = join K
3 dia2dimlem10.a A = Atoms K
4 dia2dimlem10.h H = LHyp K
5 dia2dimlem10.t T = LTrn K W
6 dia2dimlem10.r R = trL K W
7 dia2dimlem10.y Y = DVecA K W
8 dia2dimlem10.s S = LSubSp Y
9 dia2dimlem10.n N = LSpan Y
10 dia2dimlem10.i I = DIsoA K W
11 dia2dimlem10.k φ K HL W H
12 dia2dimlem10.u φ U A U ˙ W
13 dia2dimlem10.v φ V A V ˙ W
14 dia2dimlem10.f φ F T
15 dia2dimlem10.fe φ F I U ˙ V
16 4 5 6 7 10 9 dia1dim2 K HL W H F T I R F = N F
17 11 14 16 syl2anc φ I R F = N F
18 4 7 dvalvec K HL W H Y LVec
19 lveclmod Y LVec Y LMod
20 11 18 19 3syl φ Y LMod
21 11 simpld φ K HL
22 12 simpld φ U A
23 13 simpld φ V A
24 eqid Base K = Base K
25 24 2 3 hlatjcl K HL U A V A U ˙ V Base K
26 21 22 23 25 syl3anc φ U ˙ V Base K
27 12 simprd φ U ˙ W
28 13 simprd φ V ˙ W
29 21 hllatd φ K Lat
30 24 3 atbase U A U Base K
31 22 30 syl φ U Base K
32 24 3 atbase V A V Base K
33 23 32 syl φ V Base K
34 11 simprd φ W H
35 24 4 lhpbase W H W Base K
36 34 35 syl φ W Base K
37 24 1 2 latjle12 K Lat U Base K V Base K W Base K U ˙ W V ˙ W U ˙ V ˙ W
38 29 31 33 36 37 syl13anc φ U ˙ W V ˙ W U ˙ V ˙ W
39 27 28 38 mpbi2and φ U ˙ V ˙ W
40 24 1 4 7 10 8 dialss K HL W H U ˙ V Base K U ˙ V ˙ W I U ˙ V S
41 11 26 39 40 syl12anc φ I U ˙ V S
42 8 9 20 41 15 lspsnel5a φ N F I U ˙ V
43 17 42 eqsstrd φ I R F I U ˙ V
44 24 4 5 6 trlcl K HL W H F T R F Base K
45 11 14 44 syl2anc φ R F Base K
46 1 4 5 6 trlle K HL W H F T R F ˙ W
47 11 14 46 syl2anc φ R F ˙ W
48 24 1 4 10 diaord K HL W H R F Base K R F ˙ W U ˙ V Base K U ˙ V ˙ W I R F I U ˙ V R F ˙ U ˙ V
49 11 45 47 26 39 48 syl122anc φ I R F I U ˙ V R F ˙ U ˙ V
50 43 49 mpbid φ R F ˙ U ˙ V