Description: Alternate proof of dif1ennn using ax-pow . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1ennnALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 | |
|
2 | breq2 | |
|
3 | 2 | rspcev | |
4 | isfi | |
|
5 | 3 4 | sylibr | |
6 | 1 5 | sylan | |
7 | diffi | |
|
8 | isfi | |
|
9 | 7 8 | sylib | |
10 | 6 9 | syl | |
11 | 10 | 3adant3 | |
12 | en2sn | |
|
13 | 12 | elvd | |
14 | nnord | |
|
15 | orddisj | |
|
16 | 14 15 | syl | |
17 | incom | |
|
18 | disjdif | |
|
19 | 17 18 | eqtri | |
20 | unen | |
|
21 | 20 | an4s | |
22 | 19 21 | mpanl2 | |
23 | 22 | expcom | |
24 | 13 16 23 | syl2an | |
25 | 24 | 3ad2antl3 | |
26 | difsnid | |
|
27 | df-suc | |
|
28 | 27 | eqcomi | |
29 | 28 | a1i | |
30 | 26 29 | breq12d | |
31 | 30 | 3ad2ant3 | |
32 | 31 | adantr | |
33 | ensym | |
|
34 | entr | |
|
35 | peano2 | |
|
36 | nneneq | |
|
37 | 35 36 | sylan2 | |
38 | 34 37 | imbitrid | |
39 | 38 | expd | |
40 | 33 39 | syl5 | |
41 | 1 40 | sylan | |
42 | 41 | imp | |
43 | 42 | an32s | |
44 | 43 | 3adantl3 | |
45 | 32 44 | sylbid | |
46 | peano4 | |
|
47 | 46 | biimpd | |
48 | 47 | 3ad2antl1 | |
49 | 25 45 48 | 3syld | |
50 | breq2 | |
|
51 | 50 | biimprcd | |
52 | 49 51 | sylcom | |
53 | 52 | rexlimdva | |
54 | 11 53 | mpd | |