Metamath Proof Explorer


Theorem dif1ennnALT

Description: Alternate proof of dif1ennn using ax-pow . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Stefan O'Rear, 16-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dif1ennnALT MωAsucMXAAXM

Proof

Step Hyp Ref Expression
1 peano2 MωsucMω
2 breq2 x=sucMAxAsucM
3 2 rspcev sucMωAsucMxωAx
4 isfi AFinxωAx
5 3 4 sylibr sucMωAsucMAFin
6 1 5 sylan MωAsucMAFin
7 diffi AFinAXFin
8 isfi AXFinxωAXx
9 7 8 sylib AFinxωAXx
10 6 9 syl MωAsucMxωAXx
11 10 3adant3 MωAsucMXAxωAXx
12 en2sn XAxVXx
13 12 elvd XAXx
14 nnord xωOrdx
15 orddisj Ordxxx=
16 14 15 syl xωxx=
17 incom AXX=XAX
18 disjdif XAX=
19 17 18 eqtri AXX=
20 unen AXxXxAXX=xx=AXXxx
21 20 an4s AXxAXX=Xxxx=AXXxx
22 19 21 mpanl2 AXxXxxx=AXXxx
23 22 expcom Xxxx=AXxAXXxx
24 13 16 23 syl2an XAxωAXxAXXxx
25 24 3ad2antl3 MωAsucMXAxωAXxAXXxx
26 difsnid XAAXX=A
27 df-suc sucx=xx
28 27 eqcomi xx=sucx
29 28 a1i XAxx=sucx
30 26 29 breq12d XAAXXxxAsucx
31 30 3ad2ant3 MωAsucMXAAXXxxAsucx
32 31 adantr MωAsucMXAxωAXXxxAsucx
33 ensym AsucMsucMA
34 entr sucMAAsucxsucMsucx
35 peano2 xωsucxω
36 nneneq sucMωsucxωsucMsucxsucM=sucx
37 35 36 sylan2 sucMωxωsucMsucxsucM=sucx
38 34 37 imbitrid sucMωxωsucMAAsucxsucM=sucx
39 38 expd sucMωxωsucMAAsucxsucM=sucx
40 33 39 syl5 sucMωxωAsucMAsucxsucM=sucx
41 1 40 sylan MωxωAsucMAsucxsucM=sucx
42 41 imp MωxωAsucMAsucxsucM=sucx
43 42 an32s MωAsucMxωAsucxsucM=sucx
44 43 3adantl3 MωAsucMXAxωAsucxsucM=sucx
45 32 44 sylbid MωAsucMXAxωAXXxxsucM=sucx
46 peano4 MωxωsucM=sucxM=x
47 46 biimpd MωxωsucM=sucxM=x
48 47 3ad2antl1 MωAsucMXAxωsucM=sucxM=x
49 25 45 48 3syld MωAsucMXAxωAXxM=x
50 breq2 M=xAXMAXx
51 50 biimprcd AXxM=xAXM
52 49 51 sylcom MωAsucMXAxωAXxAXM
53 52 rexlimdva MωAsucMXAxωAXxAXM
54 11 53 mpd MωAsucMXAAXM