| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2 |
|
| 2 |
|
breq2 |
|
| 3 |
2
|
rspcev |
|
| 4 |
|
isfi |
|
| 5 |
3 4
|
sylibr |
|
| 6 |
1 5
|
sylan |
|
| 7 |
|
diffi |
|
| 8 |
|
isfi |
|
| 9 |
7 8
|
sylib |
|
| 10 |
6 9
|
syl |
|
| 11 |
10
|
3adant3 |
|
| 12 |
|
en2sn |
|
| 13 |
12
|
elvd |
|
| 14 |
|
nnord |
|
| 15 |
|
orddisj |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
incom |
|
| 18 |
|
disjdif |
|
| 19 |
17 18
|
eqtri |
|
| 20 |
|
unen |
|
| 21 |
20
|
an4s |
|
| 22 |
19 21
|
mpanl2 |
|
| 23 |
22
|
expcom |
|
| 24 |
13 16 23
|
syl2an |
|
| 25 |
24
|
3ad2antl3 |
|
| 26 |
|
difsnid |
|
| 27 |
|
df-suc |
|
| 28 |
27
|
eqcomi |
|
| 29 |
28
|
a1i |
|
| 30 |
26 29
|
breq12d |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
adantr |
|
| 33 |
|
ensym |
|
| 34 |
|
entr |
|
| 35 |
|
peano2 |
|
| 36 |
|
nneneq |
|
| 37 |
35 36
|
sylan2 |
|
| 38 |
34 37
|
imbitrid |
|
| 39 |
38
|
expd |
|
| 40 |
33 39
|
syl5 |
|
| 41 |
1 40
|
sylan |
|
| 42 |
41
|
imp |
|
| 43 |
42
|
an32s |
|
| 44 |
43
|
3adantl3 |
|
| 45 |
32 44
|
sylbid |
|
| 46 |
|
peano4 |
|
| 47 |
46
|
biimpd |
|
| 48 |
47
|
3ad2antl1 |
|
| 49 |
25 45 48
|
3syld |
|
| 50 |
|
breq2 |
|
| 51 |
50
|
biimprcd |
|
| 52 |
49 51
|
sylcom |
|
| 53 |
52
|
rexlimdva |
|
| 54 |
11 53
|
mpd |
|